Suppr超能文献

研究语音压缩对构音障碍语音声学特征的影响。

Investigating the Impact of Speech Compression on the Acoustics of Dysarthric Speech.

作者信息

Tran Kelvin, Xu Lingfeng, Stegmann Gabriela, Liss Julie, Berisha Visar, Utianski Rene L

机构信息

Arizona State University, USA.

Aural Analytics, USA.

出版信息

Interspeech. 2022 Sep;2022:2263-2267. doi: 10.21437/interspeech.2022-10817.

Abstract

Acoustic analysis plays an important role in the assessment of dysarthria. Out of a public health necessity, telepractice has become increasingly adopted as the modality in which clinical care is given. While there are differences in software among telepractice platforms, they all use some form of speech compression to preserve bandwidth, with the most common algorithm being the Opus codec. Opus has been optimized for compression of speech from the general (mostly healthy) population. As a result, for speech-language pathologists, this begs the question: is the remotely transmitted speech signal a faithful representation of dysarthric speech? Existing high-fidelity audio recordings from 20 speakers of various dysarthria types were encoded at three different bit rates defined within Opus to simulate different internet bandwidth conditions. Acoustic measures of articulation, voice, and prosody were extracted, and mixed-effect models were used to evaluate the impact of bandwidth conditions on the measures. Significant differences in cepstral peak prominence, degree of voice breaks, jitter, vowel space area, pitch, and vowel space area were observed after Opus processing, providing insight into the types of acoustic measures that are susceptible to speech compression algorithms.

摘要

声学分析在构音障碍评估中起着重要作用。出于公共卫生需求,远程医疗已越来越多地被用作提供临床护理的方式。虽然远程医疗平台之间的软件存在差异,但它们都使用某种形式的语音压缩来节省带宽,最常用的算法是Opus编解码器。Opus已针对一般(大多为健康)人群的语音压缩进行了优化。因此,对于言语治疗师来说,这就引出了一个问题:远程传输的语音信号是否能如实反映构音障碍语音?从20名不同类型构音障碍患者那里获取的现有高保真音频记录,按照Opus中定义的三种不同比特率进行编码,以模拟不同的网络带宽条件。提取了清晰度、嗓音和韵律方面的声学指标,并使用混合效应模型来评估带宽条件对这些指标的影响。经过Opus处理后,观察到谐波峰值突出度、嗓音中断程度、抖动、元音空间面积、音高和谐波峰值突出度等方面存在显著差异,这为了解易受语音压缩算法影响的声学指标类型提供了依据。

相似文献

1
Investigating the Impact of Speech Compression on the Acoustics of Dysarthric Speech.
Interspeech. 2022 Sep;2022:2263-2267. doi: 10.21437/interspeech.2022-10817.
2
Acoustic vowel analysis and speech intelligibility in young adult Hebrew speakers: Developmental dysarthria versus typical development.
Int J Lang Commun Disord. 2021 Mar;56(2):283-298. doi: 10.1111/1460-6984.12598. Epub 2021 Feb 1.
3
The Effects of Speech Compression Algorithms on the Intelligibility of Two Individuals With Dysarthric Speech.
Am J Speech Lang Pathol. 2019 Feb 21;28(1):195-203. doi: 10.1044/2018_AJSLP-18-0081.
4
Cepstral analysis of hypokinetic and ataxic voices: correlations with perceptual and other acoustic measures.
J Voice. 2014 Nov;28(6):673-80. doi: 10.1016/j.jvoice.2014.01.013. Epub 2014 May 16.
5
The Impact of Clear Speech on the Perceptual and Acoustic Properties of Fricative-Vowel Sequences in Speakers With Dysarthria.
Am J Speech Lang Pathol. 2021 Jun 18;30(3S):1410-1428. doi: 10.1044/2021_AJSLP-20-00157. Epub 2021 Mar 30.
6
Acoustic Measures of Dysphonia in Amyotrophic Lateral Sclerosis.
J Speech Lang Hear Res. 2023 Mar 7;66(3):872-887. doi: 10.1044/2022_JSLHR-22-00363. Epub 2023 Feb 20.
8
Accuracy of Acoustic Measures of Voice via Telepractice Videoconferencing Platforms.
J Speech Lang Hear Res. 2021 Jul 16;64(7):2586-2599. doi: 10.1044/2021_JSLHR-20-00625. Epub 2021 Jun 22.
9
Investigating the cepstral acoustic characteristics of voice in healthy children.
Int J Pediatr Otorhinolaryngol. 2021 Sep;148:110815. doi: 10.1016/j.ijporl.2021.110815. Epub 2021 Jun 29.
10
A Comparison of Cepstral Peak Prominence Measures From Two Acoustic Analysis Programs.
J Voice. 2017 May;31(3):387.e1-387.e10. doi: 10.1016/j.jvoice.2016.09.012. Epub 2016 Oct 15.

本文引用的文献

1
Accuracy of Acoustic Measures of Voice via Telepractice Videoconferencing Platforms.
J Speech Lang Hear Res. 2021 Jul 16;64(7):2586-2599. doi: 10.1044/2021_JSLHR-20-00625. Epub 2021 Jun 22.
2
The Effects of Speech Compression Algorithms on the Intelligibility of Two Individuals With Dysarthric Speech.
Am J Speech Lang Pathol. 2019 Feb 21;28(1):195-203. doi: 10.1044/2018_AJSLP-18-0081.
3
Characterizing the distribution of the quadrilateral vowel space area.
J Acoust Soc Am. 2014 Jan;135(1):421-7. doi: 10.1121/1.4829528.
4
Aerodynamic and acoustic features of vocal effort.
J Voice. 2014 Mar;28(2):144-53. doi: 10.1016/j.jvoice.2013.09.007. Epub 2014 Jan 9.
5
Automatic assessment of vowel space area.
J Acoust Soc Am. 2013 Nov;134(5):EL477-83. doi: 10.1121/1.4826150.
6
Treating disordered speech and voice in Parkinson's disease online: a randomized controlled non-inferiority trial.
Int J Lang Commun Disord. 2011 Jan-Feb;46(1):1-16. doi: 10.3109/13682822.2010.484848.
8
Telediagnostic assessment of intelligibility in dysarthria: a pilot investigation of MVP-online.
J Commun Disord. 2008 Nov-Dec;41(6):553-77. doi: 10.1016/j.jcomdis.2008.05.001. Epub 2008 May 16.
9
Cepstral peak prominence: a more reliable measure of dysphonia.
Ann Otol Rhinol Laryngol. 2003 Apr;112(4):324-33. doi: 10.1177/000348940311200406.
10
Acoustic correlates of breathy vocal quality.
J Speech Hear Res. 1994 Aug;37(4):769-78. doi: 10.1044/jshr.3704.769.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验