Suppr超能文献

用于预测绝经前女性残余和复发性高级别宫颈上皮内瘤变的随机生存森林模型

A Random Survival Forest Model for Predicting Residual and Recurrent High-Grade Cervical Intraepithelial Neoplasia in Premenopausal Women.

作者信息

Zhai Furui, Mu Shanshan, Song Yinghui, Zhang Min, Zhang Cui, Lv Ze

机构信息

Gynecological Clinic, Cangzhou Central Hospital, Cangzhou, Hebei, People's Republic of China.

出版信息

Int J Womens Health. 2024 Oct 30;16:1775-1787. doi: 10.2147/IJWH.S485515. eCollection 2024.

Abstract

PURPOSE

Loop electrosurgical excision procedure (LEEP) for high-grade cervical intraepithelial neoplasia (CIN) carries significant risks of recurrence and persistence. This study compares the efficacy of a random survival forest (RSF) model with that of a conventional Cox regression model for predicting residual and recurrent high-grade CIN in premenopausal women after LEEP.

METHODS

Data from 458 premenopausal women treated for CIN2/3 at our hospital between 2016 and 2020 were analyzed. The RSF model incorporated demographic, pathological, and treatment-related variables. Feature selection utilizing LASSO and three other algorithms was performed to enhance the RSF model, which was further compared to a Cox regression model. Model performance was assessed using area under the curve (AUC), out-of-bag (OOB) error rates, and SHAP values to interpret predictor importance.

RESULTS

The RSF model showed superior performance compared to the Cox regression model, with AUC values of 0.767-0.901 and peak predictive performance at 36 months post-LEEP. In contrast, the highest AUC achieved by Cox regression was 0.880. The RSF model also exhibited relatively lower OOB error rates, indicating better generalizability. Moreover, SHAP value analysis identified margin status and CIN severity as the most prominent predictors that directly affected risk predictions. Lastly, an online tool providing real-time predictions in clinical settings was successfully implemented using the RSF model.

CONCLUSION

The RSF model outperformed the traditional Cox regression model in predicting residual and recurrent high-grade CIN risks post-LEEP. This model may be a more accurate clinical tool that facilitates improved personalized care and early interventions in gynecological oncology.

摘要

目的

用于治疗高级别宫颈上皮内瘤变(CIN)的环形电切术(LEEP)存在显著的复发和持续风险。本研究比较随机生存森林(RSF)模型与传统Cox回归模型在预测绝经前女性LEEP术后残留及复发性高级别CIN方面的疗效。

方法

分析了2016年至2020年间在我院接受CIN2/3治疗的458例绝经前女性的数据。RSF模型纳入了人口统计学、病理学和治疗相关变量。利用套索回归(LASSO)和其他三种算法进行特征选择以增强RSF模型,并将其与Cox回归模型进行进一步比较。使用曲线下面积(AUC)、袋外(OOB)错误率和SHAP值评估模型性能,以解释预测因子的重要性。

结果

与Cox回归模型相比,RSF模型表现更优,AUC值在0.767至0.901之间,且在LEEP术后36个月时预测性能达到峰值。相比之下,Cox回归模型达到的最高AUC为0.880。RSF模型的OOB错误率也相对较低,表明其具有更好的泛化能力。此外,SHAP值分析确定切缘状态和CIN严重程度是直接影响风险预测的最突出预测因子。最后,使用RSF模型成功实现了一个在临床环境中提供实时预测的在线工具。

结论

在预测LEEP术后残留及复发性高级别CIN风险方面,RSF模型优于传统的Cox回归模型。该模型可能是一种更准确的临床工具,有助于在妇科肿瘤学中改善个性化护理和早期干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95d6/11531712/bcf59816bf87/IJWH-16-1775-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验