Suppr超能文献

含氮杂环的近边X射线吸收精细结构光谱模拟

NEXAFS Spectra Simulations of Nitrogen-Bearing Heterocycles.

作者信息

Oliveira Ricardo R, Torres Amanda D, Rocha Alexandre B

机构信息

Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil - 21941-909.

出版信息

ACS Omega. 2024 Oct 16;9(43):43884-43893. doi: 10.1021/acsomega.4c07024. eCollection 2024 Oct 29.

Abstract

Five-membered heterocyclic compounds containing nitrogen atoms are important biomolecule building blocks. In addition to their fundamental biological importance, these molecular structures are used in several technological applications. Consequently, it is essential to develop techniques that allow the characterization of these fundamental systems. We address this issue by performing simulations of K-edge NEXAFS spectra by applying a time-dependent density functional theory (TDDFT) and an inner-shell multiconfigurational self-consistent field (IS-MCSCF) of selected molecules. Also, vibronic coupling simulations were considered for the TDDFT computations. Surprisingly, molecular orbital binding energies do not reproduce the order of the transition energies obtained by IS-MCSCF, indicating a possible breakdown of the orbital picture concerning the NEXAFS spectrum. In general, the TDDFT and IS-MCSCF results are compatible and are in close agreement with experimental data. Moreover, vibronic coupling and vertical transition results were very similar. Finally, it is important to mention that, to the best of our knowledge, this is the first time that the IS-MCSCF method has been applied to molecular systems of this size.

摘要

含氮原子的五元杂环化合物是重要的生物分子构建单元。除了其基本的生物学重要性外,这些分子结构还用于多种技术应用中。因此,开发能够表征这些基本体系的技术至关重要。我们通过应用含时密度泛函理论(TDDFT)和选定分子的内壳层多组态自洽场(IS-MCSCF)对K边近边X射线吸收精细结构(NEXAFS)光谱进行模拟来解决这个问题。此外,在TDDFT计算中考虑了振子-电子耦合模拟。令人惊讶的是,分子轨道结合能无法重现通过IS-MCSCF获得的跃迁能量顺序,这表明关于NEXAFS光谱的轨道图像可能失效。总体而言,TDDFT和IS-MCSCF的结果是相容的,并且与实验数据非常吻合。此外,振子-电子耦合和垂直跃迁结果非常相似。最后,必须提到的是,据我们所知,这是首次将IS-MCSCF方法应用于这种规模的分子体系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b8b/11525529/f25780d7cef5/ao4c07024_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验