Norman Patrick, Dreuw Andreas
Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , SE-106 91 Stockholm , Sweden.
Interdisciplinary Center for Scientific Computing , Ruprecht-Karls University , Im Neuenheimer Feld 205 , 69120 Heidelberg , Germany.
Chem Rev. 2018 Aug 8;118(15):7208-7248. doi: 10.1021/acs.chemrev.8b00156. Epub 2018 Jun 12.
During the past decade, the research field of computational X-ray spectroscopy has witnessed an advancement triggered by the development of advanced synchrotron light sources and X-ray free electron lasers that in turn has enabled new sophisticated experiments with needs for supporting theoretical investigations. Following a discussion about fundamental conceptual aspects of the physical nature of core excitations and the concomitant requirements on theoretical methods, an overview is given of the major developments made in electronic-structure theory for the purpose of simulating advanced X-ray spectroscopies, covering methods based on density-functional theory as well as wave function theory. The capabilities of these theoretical approaches are illustrated by an overview of simulations of selected linear and nonlinear X-ray spectroscopies, including X-ray absorption spectroscopy (XAS), X-ray natural circular dichroism (XNCD), X-ray emission spectroscopy (XES), resonant inelastic X-ray scattering (RIXS), and X-ray two-photon absorption (XTPA).
在过去十年中,计算X射线光谱学的研究领域因先进同步辐射光源和X射线自由电子激光的发展而取得了进展,这反过来又促成了需要理论研究支持的新的精密实验。在讨论了核心激发的物理本质的基本概念方面以及对理论方法的相应要求之后,本文概述了为模拟先进X射线光谱而在电子结构理论方面取得的主要进展,涵盖了基于密度泛函理论以及波函数理论的方法。通过对选定的线性和非线性X射线光谱模拟的概述,包括X射线吸收光谱(XAS)、X射线自然圆二色性(XNCD)、X射线发射光谱(XES)、共振非弹性X射线散射(RIXS)和X射线双光子吸收(XTPA),说明了这些理论方法的能力。