Kanai Yuta, Kotaki Tomohiro, Sakai Satoko, Ishisaka Toshie, Matsuo Kayoko, Yoshida Yukino, Hirai Katsuhisa, Minami Shohei, Kobayashi Takeshi
Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
Kumamoto Prefectural Aso Livestock Hygiene Service Center, Aso, Japan.
J Virol. 2024 Dec 17;98(12):e0099624. doi: 10.1128/jvi.00996-24. Epub 2024 Nov 4.
Reverse genetics systems for rotaviruses (RV) facilitate the generation of genetically engineered RVs by transfection of 11 plasmids encoding 11 genomic viral RNA segments. In addition to viral genome expression, overexpression of NSP2 and NSP5 has been used to increase the rescue efficiency of recombinant RVs. Here, we showed that the overexpression of nucleotide sequence-modified NSP2 and NSP5 enabled the rapid and efficient production of recombinant RVs. Using improved reverse genetics, we established a reverse genetics system for human and bovine RV clinical isolates, as well as laboratory strains of bovine RV (NCDV and UK) and porcine RV (Gottfried). In addition, we rescued low-replicating recombinant RVs carrying a mutant NSP4 lacking the double-layered particle-binding domain, which was deficient in the efficient production of mature virions. These advancements in reverse genetics enabled the generation of molecular clones of RV clinical isolates and recombinant RVs harboring critical amino acid mutations, offering a versatile platform for investigating RV biology and pathogenesis.IMPORTANCERecombinant rotavirus (RV) synthesis via reverse genetics relies on both the viral propagation capacity and the efficiency of the experimental system. Since the establishment of our reverse genetics system, several enhancements have been implemented to augment the rescue efficiency. Nevertheless, challenges persist in generating RV clinical strains and recombinant viruses with low replication capacities. Notably, this improved reverse genetics system successfully facilitated the establishment of molecular clones of human and bovine RV clinical isolates. Fecal samples from patients with RV typically harbor quasi-species or, occasionally, multiple genotypes of RV. In the present study, we performed the genetic sequencing of clinical viral strains during the early propagation stages in cultured cells. Subsequently, infectious viruses were synthesized, allowing the characterization of circulating viruses in nature. This approach provides valuable insights into the genetic diversity and dynamics of RV populations and contributes to a more comprehensive understanding of viral pathogenesis and evolution.
轮状病毒(RV)的反向遗传学系统通过转染编码11个基因组病毒RNA片段的11个质粒来促进基因工程RV的产生。除了病毒基因组表达外,NSP2和NSP5的过表达已被用于提高重组RV的拯救效率。在这里,我们表明,经核苷酸序列修饰的NSP2和NSP5的过表达能够快速高效地生产重组RV。利用改进的反向遗传学,我们建立了针对人和牛RV临床分离株以及牛RV(NCDV和UK)和猪RV(Gottfried)实验室毒株的反向遗传学系统。此外,我们拯救了携带缺乏双层颗粒结合结构域突变NSP4的低复制重组RV,该结构域在成熟病毒粒子的高效生产中存在缺陷。反向遗传学的这些进展使得能够产生RV临床分离株的分子克隆以及携带关键氨基酸突变的重组RV,为研究RV生物学和发病机制提供了一个通用平台。
重要性
通过反向遗传学合成重组轮状病毒(RV)既依赖于病毒的传播能力,也依赖于实验系统的效率。自从我们建立反向遗传学系统以来,已经实施了几项改进措施来提高拯救效率。然而,在产生RV临床毒株和低复制能力的重组病毒方面仍然存在挑战。值得注意的是,这种改进的反向遗传学系统成功地促进了人和牛RV临床分离株分子克隆的建立。RV患者的粪便样本通常含有准种,偶尔还含有多种RV基因型。在本研究中,我们在培养细胞的早期传播阶段对临床病毒株进行了基因测序。随后,合成了感染性病毒,从而能够对自然界中循环的病毒进行表征。这种方法为RV群体的遗传多样性和动态提供了有价值的见解,并有助于更全面地了解病毒发病机制和进化。