Suppr超能文献

通过硼掺杂对二硫化钼进行界面工程用于电化学氮到氨的转化

Interfacial Engineering of MoS via Boron-Doping for Electrochemical N-to-NH Conversion.

作者信息

Alsabban Merfat M, Peramaiah Karthik, Genovese Alessandro, Ahmad Rafia, Azofra Luis Miguel, Ramalingam Vinoth, Hedhili Mohamed N, Wehbe Nimer, Cavallo Luigi, Huang Kuo-Wei

机构信息

Department of Chemistry, University of Jeddah, Jeddah, 21959, Kingdom of Saudi Arabia.

Chemistry Program, Center for Renewable Energy and Storage Technologies (CREST) and, Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.

出版信息

Adv Mater. 2024 Dec;36(51):e2405578. doi: 10.1002/adma.202405578. Epub 2024 Nov 4.

Abstract

The electrocatalytic synthesis of ammonia (NH) through the nitrogen reduction reaction (NRR) under ambient temperature and pressure is emerging as an alternative approach to the conventional Haber-Bosch process. However, it remains a significant challenge due to poor kinetics, low nitrogen (N) solubility in aqueous electrolytes, and the competing hydrogen evolution reaction (HER), which can significantly impact NH production rates and Faradaic efficiency (FE). Herein, a rationally designed boron-doped molybdenum sulfide (B-Mo-MoS) electrocatalyst is reported that effectively enhances N reduction to  NH with an onset potential of -0.15 V versus RHE, achieving a FE of 78% and an NH yield of 5.83 µg h⁻¹ cm⁻ in a 0.05 m HSO(aq). Theoretical studies suggest that the effectiveness of NRR originates from electron density redistribution due to boron (B) doping, which provides an ideal pathway for nitrogenous species to bind with electron-deficient B sites. This work demonstrates a significant exploration, showing that Mo-based electrocatalysts are capable of facilitating artificial N fixation.

摘要

在常温常压下通过氮还原反应(NRR)进行电催化合成氨(NH₃)正成为传统哈伯-博施法的一种替代方法。然而,由于动力学较差、氮(N)在水性电解质中的溶解度低以及竞争性析氢反应(HER),这仍然是一个重大挑战,竞争性析氢反应会显著影响NH₃的产率和法拉第效率(FE)。在此,报道了一种经过合理设计的硼掺杂硫化钼(B-Mo-MoS₂)电催化剂,它能有效促进氮还原为NH₃,相对于可逆氢电极(RHE)的起始电位为-0.15 V,在0.05 m H₂SO₄(水溶液)中实现了78%的FE和5.83 µg h⁻¹ cm⁻²的NH₃产率。理论研究表明,NRR的有效性源于硼(B)掺杂导致的电子密度重新分布,这为含氮物种与缺电子的B位点结合提供了理想途径。这项工作展示了一项重大探索,表明钼基电催化剂能够促进人工固氮。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验