Suppr超能文献

Relationship of tracheal size to maximal expiratory airflow and density dependence.

作者信息

Dolyniuk M V, Fahey P J

出版信息

J Appl Physiol (1985). 1986 Feb;60(2):501-5. doi: 10.1152/jappl.1986.60.2.501.

Abstract

Wave-speed theory predicts that maximal expiratory flow (MEF) at high lung volumes depends strongly on size of central airways. We tested this prediction by correlating MEF and tracheal cross-section area (T-XSA) in 15 (11 males, 4 females) healthy never-smoking volunteers. T-XSA was determined by planimetric analysis of contiguous 1-cm computerized tomographic scans of the intrathoracic trachea. We found a significant correlation between T-XSA at total lung capacity (TLC) and flow at 75% of vital capacity (V75) (r = 0.88, P less than 0.001). This contrasted to the correlation found between lung volume at TLC and V75 (r = 0.60). Density dependence of airflow (percent increase in V75 in air) was 35 +/- 17% and showed a significant inverse relationship to T-XSA (r = 0.70). These results confirm predictions of wave-speed theory and demonstrate the importance of cross-sectional area of central airways in determining MEF at high lung volumes. The large variability of MEF in normal individuals partly represents variations in tracheal size. Poor correlation between lung size and airway size suggests only a loose coupling between airways and lung parenchyma consistent with dysanaptic growth. Our findings indicate that changes in density dependence of airflow are not solely determined by the status of small airways and that differences in tracheal size contribute to its variability.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验