Suppr超能文献

Utilization of coalmine overburden-furnace slag and fly ash mixed cement-treated subbase/base course material for sustainable flexible pavements: mechanical performance and environmental impact.

作者信息

Karmakar Arindam, Pal Supriya, Bhattacharya Kamal

机构信息

Department of Civil Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India.

出版信息

Environ Sci Pollut Res Int. 2024 Nov 4. doi: 10.1007/s11356-024-35469-y.

Abstract

The scarcity of conventional aggregates with tremendous growth in highway construction and the indiscriminate dumping of industrial waste materials in precious landfills has become a huge global concern. This study is aimed at utilizing wastes from various industries, including coalmine overburden (OB) dump, basic oxygen furnace (BOF) slag, and fly ash to produce suitable and sustainable cement-treated subbase/base course layers (CBSB/CTB) for flexible pavement construction. Response surface methodology was used to optimize the composition of the blended material considering unconfined compressive strength (UCS) and Poisson's ratio. Results demonstrated that 50% OB dump, 40% slag, 5% fly ash, and 5% cement achieved a 7-day UCS of 4.84 MPa and Poisson's ratio of 0.25, in line with IRC:37-2018 guidelines. X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) analysis confirmed the presence of ettringite crystals, calcium-silicate-hydrate (C-S-H), and calcium-aluminosilicate-hydrate (C-A-S-H) gels which are the source of strength development in the blend. Further, a soaked California bearing ratio (CBR) of 136.08% and flexural strength of 2.06 MPa after 7 days and 28 days of curing, respectively, demonstrates the overall strength of the stabilized waste. Approximately 4% weight loss was observed after wet-dry durability tests, indicating exceptional performance of the optimal blend in inclement weather conditions. Furthermore, the environmental impact of the blended material was studied through a leaching study. Fly ash had a high zinc (Zn) level, while BOF slag showed a rich concentration of chromium (Cr), manganese (Mn), and iron (Fe) in the acid digestion test. In spite of this, the toxicity characteristics leaching procedure (TCLP) test indicated that the levels of heavy metals that leached from the stabilized material stayed considerably below the permissible limits set forth in Indian Standard, IS:10500 (2012). Finally, cost analysis showed a 51.6% reduction in construction cost with cement-treated industrial wastes instead of granular base/subbase made with conventional aggregates. The study recommends the suitability of the stabilized waste material as an alternate construction material for large-scale field applications, which could encourage the construction of flexible pavements that are environmentally benign, economical, and sustainable.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验