Pislar Nina, Gasljevic Gorana, Matos Erika, Pilko Gasper, Zgajnar Janez, Perhavec Andraz
Department of Surgical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.
Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
Breast Cancer Res Treat. 2025 Feb;210(1):87-94. doi: 10.1007/s10549-024-07539-9. Epub 2024 Nov 4.
PURPOSE: To generate a model for predicting nodal response to neoadjuvant systemic treatment (NAST) in biopsy-proven node-positive breast cancer patients (cN+) that incorporates tumor microenvironment (TME) characteristics and could be used for planning the axillary surgical staging procedure. METHODS: Clinical and pathologic features were retrospectively collected for 437 patients. Core biopsy (CB) samples were reviewed for stromal content and tumor-infiltrating lymphocytes (TIL). Orange Datamining Toolbox was used for model generation and assessment. RESULTS: 151/437 (34.6%) patients achieved nodal pCR (ypN0). The following 5 variables were included in the prediction model: ER, Her-2, grade, stroma content and TILs. After stratified tenfold cross-validation, the logistic regression algorithm achieved and area under the ROC curve (AUC) of 0.86 and F1 score of 0.72. Nomogram was used for visualization. CONCLUSIONS: We developed a clinical tool to predict nodal pCR for cN+ patients after NAST that includes biomarkers of TME and achieves an AUC of 0.86 after tenfold cross-validation.
目的:建立一个预测活检证实为淋巴结阳性的乳腺癌患者(cN+)对新辅助全身治疗(NAST)的淋巴结反应的模型,该模型纳入肿瘤微环境(TME)特征,可用于规划腋窝手术分期程序。 方法:回顾性收集437例患者的临床和病理特征。对核心活检(CB)样本进行基质含量和肿瘤浸润淋巴细胞(TIL)评估。使用橙色数据挖掘工具箱进行模型生成和评估。 结果:151/437(34.6%)例患者达到淋巴结病理完全缓解(ypN0)。预测模型纳入以下5个变量:雌激素受体(ER)、人表皮生长因子受体2(Her-2)、分级、基质含量和TIL。经过分层十折交叉验证,逻辑回归算法的受试者工作特征曲线下面积(AUC)为0.86,F1评分为0.72。使用列线图进行可视化展示。 结论:我们开发了一种临床工具,用于预测NAST后cN+患者的淋巴结病理完全缓解情况,该工具包含TME生物标志物,经过十折交叉验证后AUC为0.86。
Breast Cancer Res Treat. 2025-6
N Engl J Med. 2023-9-28
Breast Cancer Res Treat. 2022-6
NPJ Breast Cancer. 2021-12-1