文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用数据挖掘技术,通过肿瘤微环境的核心活检生物标志物预测乳腺癌新辅助治疗的淋巴结反应。

Predicting nodal response to neoadjuvant treatment in breast cancer with core biopsy biomarkers of tumor microenvironment using data mining.

作者信息

Pislar Nina, Gasljevic Gorana, Matos Erika, Pilko Gasper, Zgajnar Janez, Perhavec Andraz

机构信息

Department of Surgical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.

Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.

出版信息

Breast Cancer Res Treat. 2025 Feb;210(1):87-94. doi: 10.1007/s10549-024-07539-9. Epub 2024 Nov 4.


DOI:10.1007/s10549-024-07539-9
PMID:39496911
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11787214/
Abstract

PURPOSE: To generate a model for predicting nodal response to neoadjuvant systemic treatment (NAST) in biopsy-proven node-positive breast cancer patients (cN+) that incorporates tumor microenvironment (TME) characteristics and could be used for planning the axillary surgical staging procedure. METHODS: Clinical and pathologic features were retrospectively collected for 437 patients. Core biopsy (CB) samples were reviewed for stromal content and tumor-infiltrating lymphocytes (TIL). Orange Datamining Toolbox was used for model generation and assessment. RESULTS: 151/437 (34.6%) patients achieved nodal pCR (ypN0). The following 5 variables were included in the prediction model: ER, Her-2, grade, stroma content and TILs. After stratified tenfold cross-validation, the logistic regression algorithm achieved and area under the ROC curve (AUC) of 0.86 and F1 score of 0.72. Nomogram was used for visualization. CONCLUSIONS: We developed a clinical tool to predict nodal pCR for cN+ patients after NAST that includes biomarkers of TME and achieves an AUC of 0.86 after tenfold cross-validation.

摘要

目的:建立一个预测活检证实为淋巴结阳性的乳腺癌患者(cN+)对新辅助全身治疗(NAST)的淋巴结反应的模型,该模型纳入肿瘤微环境(TME)特征,可用于规划腋窝手术分期程序。 方法:回顾性收集437例患者的临床和病理特征。对核心活检(CB)样本进行基质含量和肿瘤浸润淋巴细胞(TIL)评估。使用橙色数据挖掘工具箱进行模型生成和评估。 结果:151/437(34.6%)例患者达到淋巴结病理完全缓解(ypN0)。预测模型纳入以下5个变量:雌激素受体(ER)、人表皮生长因子受体2(Her-2)、分级、基质含量和TIL。经过分层十折交叉验证,逻辑回归算法的受试者工作特征曲线下面积(AUC)为0.86,F1评分为0.72。使用列线图进行可视化展示。 结论:我们开发了一种临床工具,用于预测NAST后cN+患者的淋巴结病理完全缓解情况,该工具包含TME生物标志物,经过十折交叉验证后AUC为0.86。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5960/11787214/8a833c1b9683/10549_2024_7539_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5960/11787214/f2956ba8002d/10549_2024_7539_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5960/11787214/a76bea16ec22/10549_2024_7539_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5960/11787214/8a833c1b9683/10549_2024_7539_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5960/11787214/f2956ba8002d/10549_2024_7539_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5960/11787214/a76bea16ec22/10549_2024_7539_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5960/11787214/8a833c1b9683/10549_2024_7539_Fig3_HTML.jpg

相似文献

[1]
Predicting nodal response to neoadjuvant treatment in breast cancer with core biopsy biomarkers of tumor microenvironment using data mining.

Breast Cancer Res Treat. 2025-2

[2]
Nomograms for Predicting Axillary Response to Neoadjuvant Chemotherapy in Clinically Node-Positive Patients with Breast Cancer.

Ann Surg Oncol. 2016-10

[3]
Laboratory indicators predict axillary nodal pathologic complete response after neoadjuvant therapy in breast cancer.

Future Oncol. 2021-7

[4]
An ultrasound-based nomogram for predicting axillary node pathologic complete response after neoadjuvant chemotherapy in breast cancer: Modeling and external validation.

Cancer. 2024-4-15

[5]
A model to predict pathologic complete response of axillary lymph nodes to neoadjuvant chemo(immuno)therapy in patients with clinically node-positive breast cancer.

Clin Breast Cancer. 2014-10

[6]
Prediction of non-sentinel lymph node metastases in T1-2 sentinel lymph node-positive breast cancer patients undergoing mastectomy following neoadjuvant therapy.

World J Surg Oncol. 2024-9-28

[7]
A nomogram for predicting axillary pathologic complete response in hormone receptor-positive breast cancer with cytologically proven axillary lymph node metastases.

Cancer. 2020-8-15

[8]
Nomogram Based on US and Clinicopathologic Characteristics: Axillary Nodal Evaluation Following Neoadjuvant Chemotherapy in Patients With Node-Positive Breast Cancer.

Clin Breast Cancer. 2024-8

[9]
Factors Associated with Nodal Positivity Following Neoadjuvant Systemic Therapy in Breast Cancer Patients Who are Initially Node-Negative on MRI.

Ann Surg Oncol. 2025-5

[10]
Prognostic Nomogram for Prediction of Axillary Pathologic Complete Response After Neoadjuvant Chemotherapy in Cytologically Proven Node-Positive Breast Cancer.

Medicine (Baltimore). 2015-10

引用本文的文献

[1]
Critical appraisal of a data mining model for predicting nodal response to neoadjuvant treatment in breast cancer.

Breast Cancer Res Treat. 2025-6

本文引用的文献

[1]
Where Medical Statistics Meets Artificial Intelligence.

N Engl J Med. 2023-9-28

[2]
Absence of post-treatment changes in sentinel lymph nodes does not translate into increased regional recurrence rate in initially node-positive breast cancer patients.

Breast Cancer Res Treat. 2023-12

[3]
Combining the tumor-stroma ratio with tumor-infiltrating lymphocytes improves the prediction of pathological complete response in breast cancer patients.

Breast Cancer Res Treat. 2023-11

[4]
Predictive and Prognostic Role of Tumor-Infiltrating Lymphocytes in Patients with Advanced Breast Cancer Treated with Primary Systemic Therapy.

World J Surg. 2023-5

[5]
Artificial intelligence-based digital scores of stromal tumour-infiltrating lymphocytes and tumour-associated stroma predict disease-specific survival in triple-negative breast cancer.

J Pathol. 2023-5

[6]
Investigating the role of core needle biopsy in evaluating tumor-stroma ratio (TSR) of invasive breast cancer: a retrospective study.

Breast Cancer Res Treat. 2023-1

[7]
Standardization of the tumor-stroma ratio scoring method for breast cancer research.

Breast Cancer Res Treat. 2022-6

[8]
Predictors of axillary node response in node-positive patients undergoing neoadjuvant chemotherapy for breast cancer.

Can J Surg. 2022

[9]
Combinatory statuses of tumor stromal percentage and tumor infiltrating lymphocytes as prognostic factors in stage III colorectal cancers.

J Gastroenterol Hepatol. 2022-3

[10]
The tale of TILs in breast cancer: A report from The International Immuno-Oncology Biomarker Working Group.

NPJ Breast Cancer. 2021-12-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索