文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于人工智能的基质肿瘤浸润淋巴细胞和肿瘤相关基质数字评分可预测三阴性乳腺癌的疾病特异性生存情况。

Artificial intelligence-based digital scores of stromal tumour-infiltrating lymphocytes and tumour-associated stroma predict disease-specific survival in triple-negative breast cancer.

作者信息

Albusayli Rawan, Graham J Dinny, Pathmanathan Nirmala, Shaban Muhammad, Raza Shan E Ahmed, Minhas Fayyaz, Armes Jane E, Rajpoot Nasir

机构信息

Tissue Image Analytics Centre, The University of Warwick, Coventry, UK.

The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.

出版信息

J Pathol. 2023 May;260(1):32-42. doi: 10.1002/path.6061. Epub 2023 Feb 24.


DOI:10.1002/path.6061
PMID:36705810
Abstract

Triple-negative breast cancer (TNBC) is known to have a relatively poor outcome with variable prognoses, raising the need for more informative risk stratification. We investigated a set of digital, artificial intelligence (AI)-based spatial tumour microenvironment (sTME) features and explored their prognostic value in TNBC. After performing tissue classification on digitised haematoxylin and eosin (H&E) slides of TNBC cases, we employed a deep learning-based algorithm to segment tissue regions into tumour, stroma, and lymphocytes in order to compute quantitative features concerning the spatial relationship of tumour with lymphocytes and stroma. The prognostic value of the digital features was explored using survival analysis with Cox proportional hazard models in a cross-validation setting on two independent international multi-centric TNBC cohorts: The Australian Breast Cancer Tissue Bank (AUBC) cohort (n = 318) and The Cancer Genome Atlas Breast Cancer (TCGA) cohort (n = 111). The proposed digital stromal tumour-infiltrating lymphocytes (Digi-sTILs) score and the digital tumour-associated stroma (Digi-TAS) score were found to carry strong prognostic value for disease-specific survival, with the Digi-sTILs and Digi-TAS scores giving C-index values of 0.65 (p = 0.0189) and 0.60 (p = 0.0437), respectively, on the TCGA cohort as a validation set. Combining the Digi-sTILs feature with the patient's positivity status for axillary lymph nodes yielded a C-index of 0.76 on unseen validation cohorts. We surmise that the proposed digital features could potentially be used for better risk stratification and management of TNBC patients. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

摘要

三阴性乳腺癌(TNBC)的预后相对较差,预后情况不一,因此需要更具信息性的风险分层。我们研究了一组基于数字人工智能(AI)的空间肿瘤微环境(sTME)特征,并探讨了它们在TNBC中的预后价值。在对TNBC病例的数字化苏木精和伊红(H&E)切片进行组织分类后,我们采用基于深度学习的算法将组织区域分割为肿瘤、基质和淋巴细胞,以计算与肿瘤与淋巴细胞和基质的空间关系相关的定量特征。在两个独立的国际多中心TNBC队列的交叉验证设置中,使用Cox比例风险模型进行生存分析,探索数字特征的预后价值:澳大利亚乳腺癌组织库(AUBC)队列(n = 318)和癌症基因组图谱乳腺癌(TCGA)队列(n = 111)。结果发现,所提出的数字基质肿瘤浸润淋巴细胞(Digi-sTILs)评分和数字肿瘤相关基质(Digi-TAS)评分对疾病特异性生存具有很强的预后价值,在作为验证集的TCGA队列中,Digi-sTILs和Digi-TAS评分的C指数值分别为0.65(p = 0.0189)和0.60(p = 0.0437)。将Digi-sTILs特征与患者腋窝淋巴结阳性状态相结合,在未见过的验证队列中C指数为0.76。我们推测,所提出的数字特征可能潜在地用于更好地对TNBC患者进行风险分层和管理。© 2023作者。《病理学杂志》由约翰·威利父子有限公司代表大不列颠及爱尔兰病理学会出版。

相似文献

[1]
Artificial intelligence-based digital scores of stromal tumour-infiltrating lymphocytes and tumour-associated stroma predict disease-specific survival in triple-negative breast cancer.

J Pathol. 2023-5

[2]
A digital score of tumour-associated stroma infiltrating lymphocytes predicts survival in head and neck squamous cell carcinoma.

J Pathol. 2022-2

[3]
Evaluation of tumour infiltrating lymphocytes in luminal breast cancer using artificial intelligence.

Br J Cancer. 2023-11

[4]
Reproducibility and predictive value of scoring stromal tumour infiltrating lymphocytes in triple-negative breast cancer: a multi-institutional study.

Breast Cancer Res Treat. 2018-5-17

[5]
Multiscale deep learning framework captures systemic immune features in lymph nodes predictive of triple negative breast cancer outcome in large-scale studies.

J Pathol. 2023-8

[6]
Prognostic value of tumor-infiltrating lymphocytes in patients with early-stage triple-negative breast cancers (TNBC) who did not receive adjuvant chemotherapy.

Ann Oncol. 2019-12-1

[7]
Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer.

Breast Cancer Res Treat. 2016-4

[8]
Relationship Between the Neutrophil to Lymphocyte Ratio, Stromal Tumor-infiltrating Lymphocytes, and the Prognosis and Response to Neoadjuvant Chemotherapy in Triple-negative Breast Cancer.

Clin Breast Cancer. 2021-12

[9]
Interobserver variability in the assessment of stromal tumor-infiltrating lymphocytes (sTILs) in triple-negative invasive breast carcinoma influences the association with pathological complete response: the IVITA study.

Mod Pathol. 2021-12

[10]
BI-RADS Ultrasound Lexicon Descriptors and Stromal Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancer.

Acad Radiol. 2022-1

引用本文的文献

[1]
Artificial Intelligence-Based Pathology to Assist Prediction of Neoadjuvant Therapy Responses for Breast Cancer.

Cancer Med. 2025-8

[2]
Immuno-Oncology at the Crossroads: Confronting Challenges in the Quest for Effective Cancer Therapies.

Int J Mol Sci. 2025-6-26

[3]
Tumor-Infiltrating Lymphocytes in Breast and Female Genital Tract Cancers: Overlooked Potential and Unexplored Frontiers.

Cancer Med. 2025-7

[4]
Pathologist-Read vs AI-Driven Assessment of Tumor-Infiltrating Lymphocytes in Melanoma.

JAMA Netw Open. 2025-7-1

[5]
Prediction and analysis of tumor infiltrating lymphocytes across 28 cancers by TILScout using deep learning.

NPJ Precis Oncol. 2025-3-19

[6]
Artificial intelligence in breast cancer survival prediction: a comprehensive systematic review and meta-analysis.

Front Oncol. 2025-1-7

[7]
Predicting nodal response to neoadjuvant treatment in breast cancer with core biopsy biomarkers of tumor microenvironment using data mining.

Breast Cancer Res Treat. 2025-2

[8]
Automated scoring methods for quantitative interpretation of Tumour infiltrating lymphocytes (TILs) in breast cancer: a systematic review.

BMC Cancer. 2024-9-30

[9]
Tumor infiltrating lymphocytes and change in tumor load on MRI to assess response and prognosis after neoadjuvant chemotherapy in breast cancer.

Breast Cancer Res Treat. 2025-1

[10]
Digital Whole Slide Image Analysis of Elevated Stromal Content and Extracellular Matrix Protein Expression Predicts Adverse Prognosis in Triple-Negative Breast Cancer.

Int J Mol Sci. 2024-8-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索