Albusayli Rawan, Graham J Dinny, Pathmanathan Nirmala, Shaban Muhammad, Raza Shan E Ahmed, Minhas Fayyaz, Armes Jane E, Rajpoot Nasir
Tissue Image Analytics Centre, The University of Warwick, Coventry, UK.
The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.
J Pathol. 2023 May;260(1):32-42. doi: 10.1002/path.6061. Epub 2023 Feb 24.
Triple-negative breast cancer (TNBC) is known to have a relatively poor outcome with variable prognoses, raising the need for more informative risk stratification. We investigated a set of digital, artificial intelligence (AI)-based spatial tumour microenvironment (sTME) features and explored their prognostic value in TNBC. After performing tissue classification on digitised haematoxylin and eosin (H&E) slides of TNBC cases, we employed a deep learning-based algorithm to segment tissue regions into tumour, stroma, and lymphocytes in order to compute quantitative features concerning the spatial relationship of tumour with lymphocytes and stroma. The prognostic value of the digital features was explored using survival analysis with Cox proportional hazard models in a cross-validation setting on two independent international multi-centric TNBC cohorts: The Australian Breast Cancer Tissue Bank (AUBC) cohort (n = 318) and The Cancer Genome Atlas Breast Cancer (TCGA) cohort (n = 111). The proposed digital stromal tumour-infiltrating lymphocytes (Digi-sTILs) score and the digital tumour-associated stroma (Digi-TAS) score were found to carry strong prognostic value for disease-specific survival, with the Digi-sTILs and Digi-TAS scores giving C-index values of 0.65 (p = 0.0189) and 0.60 (p = 0.0437), respectively, on the TCGA cohort as a validation set. Combining the Digi-sTILs feature with the patient's positivity status for axillary lymph nodes yielded a C-index of 0.76 on unseen validation cohorts. We surmise that the proposed digital features could potentially be used for better risk stratification and management of TNBC patients. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
三阴性乳腺癌(TNBC)的预后相对较差,预后情况不一,因此需要更具信息性的风险分层。我们研究了一组基于数字人工智能(AI)的空间肿瘤微环境(sTME)特征,并探讨了它们在TNBC中的预后价值。在对TNBC病例的数字化苏木精和伊红(H&E)切片进行组织分类后,我们采用基于深度学习的算法将组织区域分割为肿瘤、基质和淋巴细胞,以计算与肿瘤与淋巴细胞和基质的空间关系相关的定量特征。在两个独立的国际多中心TNBC队列的交叉验证设置中,使用Cox比例风险模型进行生存分析,探索数字特征的预后价值:澳大利亚乳腺癌组织库(AUBC)队列(n = 318)和癌症基因组图谱乳腺癌(TCGA)队列(n = 111)。结果发现,所提出的数字基质肿瘤浸润淋巴细胞(Digi-sTILs)评分和数字肿瘤相关基质(Digi-TAS)评分对疾病特异性生存具有很强的预后价值,在作为验证集的TCGA队列中,Digi-sTILs和Digi-TAS评分的C指数值分别为0.65(p = 0.0189)和0.60(p = 0.0437)。将Digi-sTILs特征与患者腋窝淋巴结阳性状态相结合,在未见过的验证队列中C指数为0.76。我们推测,所提出的数字特征可能潜在地用于更好地对TNBC患者进行风险分层和管理。© 2023作者。《病理学杂志》由约翰·威利父子有限公司代表大不列颠及爱尔兰病理学会出版。
Breast Cancer Res Treat. 2016-4
JAMA Netw Open. 2025-7-1
NPJ Precis Oncol. 2025-3-19