Pulaski Hanna, Harrison Stephen A, Mehta Shraddha S, Sanyal Arun J, Vitali Marlena C, Manigat Laryssa C, Hou Hypatia, Madasu Christudoss Susan P, Hoffman Sara M, Stanford-Moore Adam, Egger Robert, Glickman Jonathan, Resnick Murray, Patel Neel, Taylor Cristin E, Myers Robert P, Chung Chuhan, Patterson Scott D, Sejling Anne-Sophie, Minnich Anne, Baxi Vipul, Subramaniam G Mani, Anstee Quentin M, Loomba Rohit, Ratziu Vlad, Montalto Michael C, Anderson Nick P, Beck Andrew H, Wack Katy E
PathAI, Inc., Boston, MA, USA.
Pinnacle Clinical Research, San Antonio, TX, USA.
Nat Med. 2025 Jan;31(1):315-322. doi: 10.1038/s41591-024-03301-2. Epub 2024 Nov 4.
Metabolic dysfunction-associated steatohepatitis (MASH) is a major cause of liver-related morbidity and mortality, yet treatment options are limited. Manual scoring of liver biopsies, currently the gold standard for clinical trial enrollment and endpoint assessment, suffers from high reader variability. This study represents the most comprehensive multisite analytical and clinical validation of an artificial intelligence (AI)-based pathology system, AI-based measurement of metabolic dysfunction-associated steatohepatitis (AIM-MASH), to assist pathologists in MASH trial histology scoring. AIM-MASH demonstrated high repeatability and reproducibility compared to manual scoring. AIM-MASH-assisted reads by expert MASH pathologists were superior to unassisted reads in accurately assessing inflammation, ballooning, MAS ≥ 4 with ≥1 in each score category and MASH resolution, while maintaining non-inferiority in steatosis and fibrosis assessment. These findings suggest that AIM-MASH could mitigate reader variability, providing a more reliable assessment of therapeutics in MASH clinical trials.
代谢功能障碍相关脂肪性肝炎(MASH)是肝脏相关发病和死亡的主要原因,但治疗选择有限。肝活检的人工评分目前是临床试验入组和终点评估的金标准,存在较高的阅片者变异性。本研究是对基于人工智能(AI)的病理学系统——基于AI的代谢功能障碍相关脂肪性肝炎测量(AIM-MASH)——进行的最全面的多中心分析和临床验证,以协助病理学家进行MASH试验组织学评分。与人工评分相比,AIM-MASH表现出高重复性和再现性。在准确评估炎症、气球样变、MAS≥4且各评分类别中至少有1项、以及MASH缓解方面,由MASH专家病理学家进行的AIM-MASH辅助阅片优于非辅助阅片,同时在脂肪变性和纤维化评估方面保持非劣效性。这些发现表明,AIM-MASH可以减少阅片者变异性,为MASH临床试验中的治疗提供更可靠的评估。