Suppr超能文献

基于机器学习模型预测鼻窦内翻性乳头状瘤术后无复发生存率及相关因素。

Prediction of recurrence-free survival and risk factors of sinonasal inverted papilloma after surgery by machine learning models.

机构信息

Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, 710032, China.

The Outpatient Department, Lintong Rehabilitation and Convalescent Centre, Xi'an, 710600, China.

出版信息

Eur J Med Res. 2024 Nov 4;29(1):528. doi: 10.1186/s40001-024-02099-6.

Abstract

OBJECTIVES

Our research aims to construct machine learning prediction models to identify patients proned to recurrence after inverted papilloma (IP) surgery and guide their follow-up treatment.

METHODS

This study collected 210 patients underwent IP resection surgery at a university hospital from January 2010 to December 2023. Six machine learning algorithms including ExtraSurvivalTrees (EST), GradientBoostingSurvivalAnalysis (GBSA), RandomSurvivalForest (RSF), SurvivalSVM, Coxnet and Coxph, were used to construct the prediction models. Shapley Additive Explanations (SHAP) values were used to explain the importance of various features in predicting IP recurrence.

RESULTS

We found that the recurrence rate of IP patients is 20.00%, with a median recurrence time of 35.5 months. Multivariate Cox regression analysis identified mild or moderate dysplasia as an independent risk factor for recurrence. The EST model performs the best in predicting postoperative recurrence of IP, with C-index of 0.968 and 0.878 in the training and testing sets. SHAP emphasizes five important predictive factors for recurrence, including bone defects, orbital involvement, smoking, no processing of tumor attachment sites and drinking.

CONCLUSIONS

To our knowledge, this is the first study to use multiple ML models to predict postoperative recurrence of IP. The EST model has the best predictive performance, with SHAP emphasizing several key predictive factors for IP recurrence. This study emphasizes the practicality of machine learning algorithms in predicting IP clinical outcomes, providing valuable insights into the potential for improving clinical decision-making.

摘要

目的

我们的研究旨在构建机器学习预测模型,以识别易发生复发性的侵袭性鼻窦内翻性乳头状瘤(IP)术后患者,并指导其随访治疗。

方法

本研究收集了 2010 年 1 月至 2023 年 12 月期间在一所大学医院接受 IP 切除术的 210 名患者的资料。使用 6 种机器学习算法(ExtraSurvivalTrees [EST]、GradientBoostingSurvivalAnalysis [GBSA]、RandomSurvivalForest [RSF]、SurvivalSVM、Coxnet 和 Coxph)构建预测模型。使用 Shapley Additive Explanations(SHAP)值解释预测 IP 复发的各种特征的重要性。

结果

我们发现 IP 患者的复发率为 20.00%,中位复发时间为 35.5 个月。多变量 Cox 回归分析确定轻度或中度异型增生是复发的独立危险因素。EST 模型在预测 IP 术后复发方面表现最佳,在训练集和测试集中的 C 指数分别为 0.968 和 0.878。SHAP 强调了 5 个与复发相关的重要预测因素,包括骨缺损、眼眶受累、吸烟、未处理肿瘤附着部位和饮酒。

结论

据我们所知,这是第一项使用多种 ML 模型预测 IP 术后复发的研究。EST 模型具有最佳的预测性能,SHAP 强调了几个与 IP 复发相关的关键预测因素。本研究强调了机器学习算法在预测 IP 临床结局方面的实用性,为改善临床决策提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d195/11533278/8a7d0ed5c66d/40001_2024_2099_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验