Suppr超能文献

电刺激神经纤维的自适应漏电积分和发放概率模型。

An Adaptive Leaky-Integrate and Firing Probability Model of an Electrically Stimulated Auditory Nerve Fiber.

机构信息

Department of Medical Physics and Acoustics, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.

Cluster of Excellence "Hearing4All", Oldenburg, Germany.

出版信息

Trends Hear. 2024 Jan-Dec;28:23312165241286742. doi: 10.1177/23312165241286742.

Abstract

Most neural models produce a spiking output and often represent the stochastic nature of the spike generation process via a stochastic output. Nonspiking neural models, on the other hand, predict the probability of a spike occurring in response to a stimulus. We propose a nonspiking model for an electrically stimulated auditory nerve fiber, which not only predicts the total probability of a spike occurring in response to a biphasic pulse but also the distribution of the spike time. Our adaptive leaky-integrate and firing probability (aLIFP) model can account for refractoriness, facilitation, accommodation, and long-term adaptation. All model parameters have been fitted to single cell recordings from electrically stimulated cat auditory nerve fibers. Afterward, the model was validated on recordings from auditory nerve fibers from cats and guinea pigs. The nonspiking nature of the model makes it fast and deterministic while still accounting for the stochastic nature of the spike generation process. Therefore, the relationship between the input to the model or model parameters and the model's output can be observed more directly than with stochastically spiking models.

摘要

大多数神经模型产生尖峰输出,并且通常通过随机输出来表示尖峰产生过程的随机性。而非尖峰神经模型则预测在响应刺激时发生尖峰的概率。我们提出了一种用于电刺激听神经纤维的非尖峰模型,该模型不仅预测了响应双相脉冲发生尖峰的总概率,还预测了尖峰时间的分布。我们的自适应漏电积分和发放概率(aLIFP)模型可以解释不应期、易化、适应和长期适应。所有模型参数均已根据电刺激猫听神经纤维的单细胞记录进行了拟合。之后,该模型在来自猫和豚鼠的听神经纤维记录上进行了验证。该模型的非尖峰性质使其快速且确定,同时仍能解释尖峰产生过程的随机性。因此,与随机尖峰模型相比,可以更直接地观察模型输入或模型参数与模型输出之间的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90c9/11536406/fee634322ae6/10.1177_23312165241286742-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验