Suppr超能文献

通过物理信息机器学习进行数据融合对下水道系统中的瞬态混合流进行建模。

Modeling transient mixed flows in sewer systems with data fusion via physics-informed machine learning.

作者信息

Li Shixun, Tian Wenchong, Yan Hexiang, Zeng Wei, Tao Tao, Xin Kunlun

机构信息

College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China.

出版信息

Water Res X. 2024 Oct 15;25:100266. doi: 10.1016/j.wroa.2024.100266. eCollection 2024 Dec 1.

Abstract

Transitions between free-surface and pressurized flows, known as transient mixed flows, have posed significant challenges in urban drainage systems (UDS), e.g., pipe bursts, road collapses, and geysers. However, traditional mechanistic modeling for mixed flows is challenged by the difficult integration of multi-source data, complex equation forms for the discovery of dynamic processes, and high computational demands. In response, we proposed a data-driven model, TMF-PINN, which utilizes a Physics-Informed Neural Network (PINN) to simulate and invert Transient Mixed Flow (TMF) in sewer networks. This model integrates experimental data, simulation results and Partial Differential Equations (PDEs) into its loss function, leveraging the extensive data available in smart urban water systems. A status factor () has been introduced to seamlessly link open channel and pressurized flow dynamics, facilitating rapid adjustments in wave speed. On this basis, Fourier feature extraction and quadratic neural networks have been employed to capture complex dynamic processes featuring high-frequency. Validation through three classical cases using the Storm Water Management Model (SWMM) and comparisons with finite volume Harten-Lax-van Leer (HLL) solver reveal that the proposed model circumvents the constraints of spatiotemporal resolution, yielding accurate flow field predictions.

摘要

自由表面流和压力流之间的过渡,即瞬态混合流,给城市排水系统(UDS)带来了重大挑战,例如管道爆裂、道路坍塌和喷泉现象。然而,传统的混合流机理建模面临多源数据难以整合、发现动态过程的复杂方程形式以及高计算需求等挑战。作为回应,我们提出了一种数据驱动模型TMF-PINN,它利用物理信息神经网络(PINN)来模拟和反演污水管网中的瞬态混合流(TMF)。该模型将实验数据、模拟结果和偏微分方程(PDEs)集成到其损失函数中,利用智能城市水系统中可用的大量数据。引入了一个状态因子()来无缝连接明渠和压力流动动力学,便于波速的快速调整。在此基础上,采用傅里叶特征提取和二次神经网络来捕捉具有高频特征的复杂动态过程。通过使用暴雨管理模型(SWMM)的三个经典案例进行验证,并与有限体积Harten-Lax-van Leer(HLL)求解器进行比较,结果表明所提出的模型规避了时空分辨率的限制,能够准确预测流场。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ca8/11533095/e53db8c90ff6/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验