Akpinar Reha, Panzeri Davide, De Carlo Camilla, Belsito Vincenzo, Durante Barbara, Chirico Giuseppe, Lombardi Rosa, Fracanzani Anna Ludovica, Maggioni Marco, Arcari Ivan, Roncalli Massimo, Terracciano Luigi M, Inverso Donato, Aghemo Alessio, Pugliese Nicola, Sironi Laura, Di Tommaso Luca
Department of Pathology, IRCCS Humanitas Research Hospital, Milan, Italy.
Department of Biomedical Sciences, Humanitas University, Milan, Italy.
Front Med (Lausanne). 2024 Oct 21;11:1480866. doi: 10.3389/fmed.2024.1480866. eCollection 2024.
The risk of disease progression in MASH increases proportionally to the pathological stage of fibrosis. This latter is evaluated through a semi-quantitative process, which has limited sensitivity in reflecting changes in disease or response to treatment. This study aims to test the clinical impact of Artificial Intelligence (AI) in characterizing liver fibrosis in MASH patients.
The study included 60 patients with clinical pathological diagnosis of MASH. Among these, 17 received a medical treatment and underwent a post-treatment biopsy. For each biopsy (n = 77) a Sirius Red digital slide (SR-WSI) was obtained. AI extracts >30 features from SR-WSI, including estimated collagen area (ECA) and entropy of collagen (EnC).
AI highlighted that different histopathological stages are associated with progressive and significant increase of ECA (F2: 2.6% ± 0.4; F3: 5.7% ± 0.4; F4: 10.9% ± 0.8; p: 0.0001) and EnC (F2: 0.96 ± 0.05; F3: 1.24 ± 0.06; F4: 1.80 ± 0.11, p: 0.0001); disclosed the heterogeneity of fibrosis among pathological homogenous cases; revealed post treatment fibrosis modification in 76% of the cases ( 56% detected by histopathology).
AI characterizes the fibrosis process by its true, continuous, and non-categorical nature, thus allowing for better identification of the response to anti-MASH treatment.
非酒精性脂肪性肝炎(MASH)疾病进展的风险与纤维化的病理阶段成比例增加。后者通过半定量过程进行评估,该过程在反映疾病变化或对治疗的反应方面敏感性有限。本研究旨在测试人工智能(AI)在表征MASH患者肝纤维化方面的临床影响。
该研究纳入了60例经临床病理诊断为MASH的患者。其中,17例接受了药物治疗并在治疗后进行了活检。对于每一次活检(n = 77),均获得了天狼星红数字切片(SR-WSI)。AI从SR-WSI中提取了超过30个特征,包括估计的胶原面积(ECA)和胶原熵(EnC)。
AI强调不同的组织病理学阶段与ECA(F2:2.6%±0.4;F3:5.7%±0.4;F4:10.9%±0.8;p:0.0001)和EnC(F2:0.96±0.05;F3:1.24±0.06;F4:1.80±0.11,p:0.0001)的逐步显著增加相关;揭示了病理同质病例中纤维化的异质性;在76%的病例中发现了治疗后纤维化的改变(组织病理学检测到56%)。
AI通过其真实、连续和非分类的性质来表征纤维化过程,从而能够更好地识别抗MASH治疗的反应。