Suppr超能文献

慢而灵活还是快而刻板?离散与连续过程之比较。

Slow but flexible or fast but rigid? Discrete and continuous processes compared.

作者信息

Priorelli Matteo, Stoianov Ivilin Peev

机构信息

Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Padova, Italy.

出版信息

Heliyon. 2024 Oct 18;10(20):e39129. doi: 10.1016/j.heliyon.2024.e39129. eCollection 2024 Oct 30.

Abstract

A tradeoff exists when dealing with complex tasks composed of multiple steps. High-level cognitive processes can find the best sequence of actions to achieve a goal in uncertain environments, but they are slow and require significant computational demand. In contrast, lower-level processing allows reacting to environmental stimuli rapidly, but with limited capacity to determine optimal actions or to replan when expectations are not met. Through reiteration of the same task, biological organisms find the optimal tradeoff: from action primitives, composite trajectories gradually emerge by creating task-specific neural structures. The two frameworks of active inference - a recent brain paradigm that views action and perception as subject to the same imperative - well capture high-level and low-level processes of human behavior, but how task specialization occurs in these terms is still unclear. In this study, we compare two strategies on a dynamic pick-and-place task: a hybrid (discrete-continuous) model with planning capabilities and a continuous-only model with fixed transitions. Both models rely on a hierarchical (intrinsic and extrinsic) structure, well suited for defining reaching and grasping movements, respectively. Our results show that continuous-only models perform better and with minimal resource expenditure but at the cost of less flexibility. Finally, we propose how discrete actions might lead to continuous attractors and compare the two frameworks with different motor learning phases, laying the foundations for further studies on bio-inspired task adaptation.

摘要

在处理由多个步骤组成的复杂任务时,存在一种权衡。高级认知过程能够在不确定的环境中找到实现目标的最佳行动序列,但它们速度较慢且需要大量的计算资源。相比之下,低级处理能够快速对环境刺激做出反应,但在确定最佳行动或在期望未达成时重新规划方面的能力有限。通过重复执行相同的任务,生物体会找到最佳的权衡点:从动作原语开始,通过创建特定任务的神经结构,逐渐形成复合轨迹。主动推理的两个框架——一种将动作和感知视为受同一指令约束的最新大脑范式——很好地捕捉了人类行为的高级和低级过程,但从这些方面来看任务专业化是如何发生的仍不清楚。在本研究中,我们在一个动态抓取放置任务上比较了两种策略:一种具有规划能力的混合(离散 - 连续)模型和一种具有固定转换的仅连续模型。这两种模型都依赖于分层(内在和外在)结构,分别非常适合定义伸手和抓握动作。我们的结果表明,仅连续模型表现更好且资源消耗最小,但代价是灵活性较低。最后,我们提出离散动作可能如何导致连续吸引子,并将这两个框架与不同的运动学习阶段进行比较,为进一步研究受生物启发的任务适应性奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00db/11532823/36daa3b5b64d/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验