Rivadeneira-Bolaños Fabio Eliveny, Nope-Rodríguez Sandra Esperanza, Páez-Melo Martha Isabel, Pinedo-Jaramillo Carlos Rafael
Escuela de Ingeniería Eléctrica y Electrónica (EIEE) Facultad de Ingeniería, Universidad del Valle, Cali, Colombia.
Departamento de Química (FCNE), Universidad del Valle, Cali, Colombia.
MethodsX. 2024 Oct 15;13:102996. doi: 10.1016/j.mex.2024.102996. eCollection 2024 Dec.
A method is presented for predicting total phosphorus concentration in soils from Santander de Quilichao, Colombia, using a UV-VIS V-750 Spectrophotometer and machine learning techniques. A total of 152 soil samples, prepared with varying proportions of PO fertilizer and soil, were analyzed, obtaining reflectance spectra in the 200 to 900 nm range with 3501 wavelengths. Additionally, 152 laboratory results of total phosphorus concentration were used to train the prediction model. The spectra were filtered using a Savitzky-Golay filter. Key wavelengths were identified using Variable Importance in Projection - Partial Least Squares (VIP-PLS) and Random Forest (RF), reducing the spectral bands to 1085. Principal Component Analysis (PCA) further reduced data dimensionality. A feedforward artificial neural network was then trained to predict phosphorus concentration. This method is faster than traditional lab tests by leveraging advanced data analysis and machine learning, offering results in less time. While sample preparation remains consistent with standard spectroscopic analysis, the value added by the proposed method lies in its data processing and interpretation. Currently applied to a single soil type, future improvements will include more soil types and other macronutrients, enhancing nutrient management in agriculture. Accurate macronutrient measurements aid in better fertilizer uses planning. • Filtering spectra and determining relevant wavelengths using VIP-PLS and RF. • Dimensionality reduction with PCA. • Training feedforward artificial neural networks.
本文介绍了一种利用紫外可见V-750分光光度计和机器学习技术预测哥伦比亚桑坦德德基利乔土壤中总磷浓度的方法。共分析了152个用不同比例磷肥和土壤制备的土壤样品,获得了200至900纳米范围内3501个波长的反射光谱。此外,利用152个总磷浓度的实验室结果训练预测模型。使用Savitzky-Golay滤波器对光谱进行滤波。利用投影变量重要性-偏最小二乘法(VIP-PLS)和随机森林(RF)确定关键波长,将光谱带减少到1085个。主成分分析(PCA)进一步降低了数据维度。然后训练前馈人工神经网络来预测磷浓度。该方法通过利用先进的数据分析和机器学习,比传统实验室测试更快,能在更短时间内得出结果。虽然样品制备与标准光谱分析一致,但该方法的附加值在于其数据处理和解释。目前该方法仅应用于单一土壤类型,未来的改进将包括更多土壤类型和其他大量营养素,以加强农业中的养分管理。准确的大量营养素测量有助于更好地规划肥料使用。• 使用VIP-PLS和RF对光谱进行滤波并确定相关波长。• 用PCA进行降维。• 训练前馈人工神经网络。