Suppr超能文献

通过整体DNA甲基化估计的肿瘤纯度可用于调整个体样本的β值,以更好地反映肿瘤生物学特性。

Tumor purity estimated from bulk DNA methylation can be used for adjusting beta values of individual samples to better reflect tumor biology.

作者信息

Sasiain Iñaki, Nacer Deborah F, Aine Mattias, Veerla Srinivas, Staaf Johan

机构信息

Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden.

Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund 22381, Sweden.

出版信息

NAR Genom Bioinform. 2024 Nov 4;6(4):lqae146. doi: 10.1093/nargab/lqae146. eCollection 2024 Sep.

Abstract

Epigenetic deregulation through altered DNA methylation is a fundamental feature of tumorigenesis, but tumor data from bulk tissue samples contain different proportions of malignant and non-malignant cells that may confound the interpretation of DNA methylation values. The adjustment of DNA methylation data based on tumor purity has been proposed to render both genome-wide and gene-specific analyses more precise, but it requires sample purity estimates. Here we present PureBeta, a single-sample statistical framework that uses genome-wide DNA methylation data to first estimate sample purity and then adjust methylation values of individual CpGs to correct for sample impurity. Purity values estimated with the algorithm have high correlation (>0.8) to reference values obtained from DNA sequencing when applied to samples from breast carcinoma, lung adenocarcinoma, and lung squamous cell carcinoma. Methylation beta values adjusted based on purity estimates have a more binary distribution that better reflects theoretical methylation states, thus facilitating improved biological inference as shown for in breast cancer. PureBeta is a versatile tool that can be used for different Illumina DNA methylation arrays and can be applied to individual samples of different cancer types to enhance biological interpretability of methylation data.

摘要

通过改变DNA甲基化实现的表观遗传失调是肿瘤发生的一个基本特征,但来自大块组织样本的肿瘤数据包含不同比例的恶性和非恶性细胞,这可能会混淆DNA甲基化值的解释。有人提出基于肿瘤纯度对DNA甲基化数据进行调整,以使全基因组和基因特异性分析更加精确,但这需要样本纯度估计。在此,我们展示了PureBeta,这是一个单样本统计框架,它使用全基因组DNA甲基化数据首先估计样本纯度,然后调整单个CpG的甲基化值以校正样本杂质。当应用于乳腺癌、肺腺癌和肺鳞状细胞癌的样本时,用该算法估计的纯度值与从DNA测序获得的参考值具有高度相关性(>0.8)。基于纯度估计调整后的甲基化β值具有更二元的分布,能更好地反映理论甲基化状态,从而如在乳腺癌中所示,有助于改进生物学推断。PureBeta是一种通用工具,可用于不同的Illumina DNA甲基化阵列,并可应用于不同癌症类型的单个样本,以增强甲基化数据的生物学可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4f/11532792/e85634e74909/lqae146figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验