Suppr超能文献

基于分子/纳米碳杂化催化剂的近全光热一氧化碳加氢制甲醇

Near-Unity Photothermal CO Hydrogenation to Methanol Based on a Molecule/Nanocarbon Hybrid Catalyst.

作者信息

Ren Siyun, Han Junnan, Yang Zhengwei, Liang Jie, Feng Shijia, Zhang Xing, Xu Jun, Zhu Jia

机构信息

National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China.

School of Microelectronics and School of Integrated Circuits, Nantong University, Nantong, 226019, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2025 Jan 21;64(4):e202416376. doi: 10.1002/anie.202416376. Epub 2024 Nov 21.

Abstract

Solar-driven CO-to-methanol conversion provides an intriguing route for both solar energy storage and CO mitigation. For scalable applications, near-unity methanol selectivity is highly desirable to reduce the energy and cost endowed by low-value byproducts and complex separation processes, but so far has not been achieved. Here we demonstrate a molecule/nanocarbon hybrid catalyst composed of carbon nanotube-supported molecularly dispersed cobalt phthalocyanine (CoPc/CNT), which synergistically integrates high photothermal conversion capability for affording an optimal reaction temperature with homogeneous and intrinsically-efficient active sites, to achieve a catalytic activity of 2.4 mmol g  h and selectivity of ~99 % in direct photothermal CO hydrogenation to methanol reaction. Both theoretical calculations and operando characterizations consistently confirm that the unique electronic structure of CoPc and appropriate reaction temperature cooperatively enable a thermodynamic favorable reaction pathway for highly selective methanol production. This work represents an important milestone towards the development of advanced photothermal catalysts for scalable and cost-effective CO hydrogenation.

摘要

太阳能驱动的一氧化碳转化为甲醇为太阳能储存和减少一氧化碳排放提供了一条引人入胜的途径。对于可扩展应用而言,非常希望甲醇选择性接近100%,以减少低价值副产物和复杂分离过程带来的能量和成本,但迄今为止尚未实现。在此,我们展示了一种由碳纳米管负载的分子分散酞菁钴(CoPc/CNT)组成的分子/纳米碳杂化催化剂,该催化剂协同整合了高光热转换能力以提供最佳反应温度,并具有均匀且本质高效的活性位点,在直接光热一氧化碳加氢制甲醇反应中实现了2.4 mmol g⁻¹ h⁻¹的催化活性和~99%的选择性。理论计算和原位表征均一致证实,CoPc独特的电子结构和合适的反应温度协同作用,为高选择性甲醇生产提供了热力学有利的反应途径。这项工作代表了开发用于可扩展且具有成本效益的一氧化碳加氢的先进光热催化剂的一个重要里程碑。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验