Department of Electrical Engineering, University Institute of Technology, HPU, Shimla, India.
Department of Civil Engineering, University Institute of Technology, HPU, Shimla, India.
Environ Monit Assess. 2024 Nov 5;196(12):1167. doi: 10.1007/s10661-024-13311-9.
To maximize energy recovery in waste-to-energy (WTE) systems, the High Heating Value (HHV) of municipal solid waste (MSW) must be accurately estimated. To forecast the HHV of MSW, this study proposes a unique method that combines an Artificial Neural Network (ANN) model with Latin Hypercube Sampling (LHS), with a focus on Solan City, Himachal Pradesh, India. In the present study, the elemental characteristics of waste have been used to deal with uncertainty and to find the suitable parameters responsible for the HHV of the MSW. Initially, Latin Hypercube Sampling (LHS) has been used to deal with uncertainty in the elemental composition of MSW, which includes carbon (C), hydrogen (H), nitrogen (N), sulfur (S), and oxygen (O) content. This elemental composition has been used as input parameters to the ANN model for predicting the HHV of MSW. The network 5-28-5-1 offered a minimum MAPE value of 2.18%, MSE, RMSE and R values are 0.012, 0.107 and 0.767, respectively. Thereafter, a synaptic weight approach was used to find the most significant parameters responsible for HHV in MSW. It was observed that carbon is the most suitable parameter for HHV of MSW. By dealing with the uncertainty in MSW characteristics, the integration of LHS strengthens the robustness of the model. The results offer an accurate and economical approach for HHV estimation, which will be useful for improving the MSW management and WTE conversion procedures.
为了在垃圾焚烧(WTE)系统中实现能量的最大化回收,必须准确估计城市固体废物(MSW)的高热值(HHV)。为了预测 MSW 的 HHV,本研究提出了一种独特的方法,将人工神经网络(ANN)模型与拉丁超立方抽样(LHS)相结合,以印度喜马偕尔邦的索兰市为重点。在本研究中,废物的元素特征已被用于处理不确定性,并找到负责 MSW HHV 的合适参数。最初,拉丁超立方抽样(LHS)已用于处理 MSW 元素成分的不确定性,其中包括碳(C)、氢(H)、氮(N)、硫(S)和氧(O)含量。该元素组成已被用作 ANN 模型预测 MSW HHV 的输入参数。网络 5-28-5-1 提供了最小的 MAPE 值为 2.18%,MSE、RMSE 和 R 值分别为 0.012、0.107 和 0.767。此后,使用突触权重方法来确定对 MSW 中 HHV 负责的最重要参数。结果表明,碳是 MSW HHV 的最适参数。通过处理 MSW 特性中的不确定性,LHS 的集成增强了模型的稳健性。该结果提供了一种准确且经济的 HHV 估计方法,这将有助于改进 MSW 管理和 WTE 转换过程。