Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Takustr. 3, 14195 Berlin, Germany.
Institute of Physical Chemistry and Electrochemistry, Leibniz Universitaet Hannover, Callinstr. 3A, 30167 Hannover, Germany.
ACS Appl Bio Mater. 2024 Nov 18;7(11):7544-7555. doi: 10.1021/acsabm.4c01127. Epub 2024 Nov 5.
Thermoresponsive polymer coatings on cell culture substrates enable noninvasive cell detachment and cell sheet fabrication for biomedical applications. Optimized coatings should support controlled culture and detachment of various cell types and allow chemical modifications, e.g., to introduce specific growth factors for enhanced gene expression. Furthermore, the sterilization and storage stability of the coatings must be assessed for translational attempts. Poly(glycidyl ether) () brush coatings with short alkoxy side chains provide a versatile platform for cell culture and detachment, but their polyether backbones are susceptible to oxidation and degradation. Thus, we rationally designed potential alternatives with thermoresponsive glycerol-based block copolymers comprising a stable polyacrylate or polymethacrylate backbone and an oligomeric benzophenone (BP)-based anchor. The resulting poly(ethoxy hydroxypropyl acrylate--benzophenone acrylate) () and poly(ethoxy hydroxypropyl methacrylate--benzophenone methacrylate) () block copolymers preserve the short alkoxy-terminated side chains of the derived structure on a stable, but hydrophobic, aliphatic backbone. The amphiphilicity balance is maintained through incorporated hydroxyl groups, which simultaneously can be used for chemical modification. The polymers were tailored into brush coatings on polystyrene surfaces via directed adsorption using the BP oligomer anchor. The resulting coatings with thickness values up to ∼3 nm supported efficient adhesion and proliferation of human fibroblasts despite minimal protein adsorption. The conditions for cell sheet fabrication on were gentler and more reliable than on , which required additional cooling. Hence, the stability of and coatings was evaluated post gamma and formaldehyde (FO) gas sterilization. Gamma sterilization partially degraded coatings and hindered cell detachment on . In contrast, FO sterilization only slowed detachment on coatings and had no adverse effects on , maintaining their efficient performance in cell sheet fabrication.
温敏聚合物涂层可用于细胞培养基质,实现无损伤细胞脱离和细胞片层制造,从而应用于生物医学领域。优化后的涂层应支持各种细胞类型的受控培养和脱离,并允许进行化学修饰,例如,引入特定的生长因子以增强基因表达。此外,必须评估涂层的灭菌和储存稳定性,以进行转化尝试。具有短烷氧基侧链的聚(缩水甘油醚)()刷状涂层为细胞培养和脱离提供了一个多功能平台,但它们的聚醚主链容易氧化和降解。因此,我们合理设计了具有温敏性甘油基嵌段共聚物的潜在替代品,该嵌段共聚物包含稳定的聚丙烯酸酯或聚甲基丙烯酸酯主链和一个低聚物二苯甲酮(BP)基锚固剂。所得的聚(乙氧基羟丙基丙烯酸酯-苯甲酮丙烯酸酯)()和聚(乙氧基羟丙基甲基丙烯酸酯-苯甲酮甲基丙烯酸酯)()嵌段共聚物在稳定但疏水性脂肪族主链上保留了源自的短烷氧基封端侧链。通过引入同时可用于化学修饰的羟基来保持两亲平衡。通过使用 BP 低聚物锚固剂定向吸附,将这些聚合物制成聚苯乙烯表面的刷状涂层。所得涂层厚度值高达约 3nm,尽管蛋白质吸附量很少,但仍能支持人成纤维细胞的有效粘附和增殖。与 相比,在 上制造细胞片层的条件更加温和且更可靠,因为在 上需要额外冷却。因此,评估了辐照和福尔马林(FO)气体灭菌后 和 的涂层稳定性。辐照灭菌部分降解了 涂层,并阻碍了 在 上的细胞脱离。相比之下,FO 灭菌仅减缓了 在 上的脱离速度,对 没有不利影响,保持了其在细胞片层制造中的高效性能。