文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

靶向RNA降解与诱导RNA衰变技术

Technologies for Targeted RNA Degradation and Induced RNA Decay.

作者信息

Mikutis Sigitas, Bernardes Gonçalo J L

机构信息

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.

出版信息

Chem Rev. 2024 Dec 11;124(23):13301-13330. doi: 10.1021/acs.chemrev.4c00472. Epub 2024 Nov 5.


DOI:10.1021/acs.chemrev.4c00472
PMID:39499674
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11638902/
Abstract

The vast majority of the human genome codes for RNA, but RNA-targeting therapeutics account for a small fraction of approved drugs. As such, there is great incentive to improve old and develop new approaches to RNA targeting. For many RNA targeting modalities, just binding is not sufficient to exert a therapeutic effect; thus, targeted RNA degradation and induced decay emerged as powerful approaches with a pronounced biological effect. This review covers the origins and advanced use cases of targeted RNA degrader technologies grouped by the nature of the targeting modality as well as by the mode of degradation. It covers both well-established methods and clinically successful platforms such as RNA interference, as well as emerging approaches such as recruitment of RNA quality control machinery, CRISPR, and direct targeted RNA degradation. We also share our thoughts on the biggest hurdles in this field, as well as possible ways to overcome them.

摘要

人类基因组的绝大部分编码RNA,但靶向RNA的治疗药物在获批药物中只占一小部分。因此,改进旧方法并开发新的RNA靶向方法具有很大的吸引力。对于许多RNA靶向方式而言,仅仅结合不足以发挥治疗作用;因此,靶向RNA降解和诱导衰变成为具有显著生物学效应的强大方法。本综述涵盖了靶向RNA降解技术的起源和先进应用案例,这些技术按靶向方式的性质以及降解模式进行分类。它涵盖了成熟的方法和临床成功的平台,如RNA干扰,以及新兴的方法,如招募RNA质量控制机制、CRISPR和直接靶向RNA降解。我们还分享了我们对该领域最大障碍以及克服这些障碍的可能方法的看法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/714aacdeb66a/cr4c00472_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/69941f5fb039/cr4c00472_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/809c0d3ca2e0/cr4c00472_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/58e171ec7cd3/cr4c00472_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/fd644f7a4a36/cr4c00472_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/b458c2a8daab/cr4c00472_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/7e917f9ab253/cr4c00472_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/ee99f1ed1c4f/cr4c00472_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/d87aacd52cbf/cr4c00472_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/dbc76c846890/cr4c00472_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/92c6c92cc031/cr4c00472_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/b3d9c6d6fdde/cr4c00472_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/58f404f2a064/cr4c00472_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/61a2bc0ef9de/cr4c00472_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/714aacdeb66a/cr4c00472_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/69941f5fb039/cr4c00472_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/809c0d3ca2e0/cr4c00472_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/58e171ec7cd3/cr4c00472_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/fd644f7a4a36/cr4c00472_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/b458c2a8daab/cr4c00472_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/7e917f9ab253/cr4c00472_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/ee99f1ed1c4f/cr4c00472_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/d87aacd52cbf/cr4c00472_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/dbc76c846890/cr4c00472_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/92c6c92cc031/cr4c00472_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/b3d9c6d6fdde/cr4c00472_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/58f404f2a064/cr4c00472_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/61a2bc0ef9de/cr4c00472_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b85/11638902/714aacdeb66a/cr4c00472_0014.jpg

相似文献

[1]
Technologies for Targeted RNA Degradation and Induced RNA Decay.

Chem Rev. 2024-12-11

[2]
RNA-targeting strategies as a platform for ocular gene therapy.

Prog Retin Eye Res. 2023-1

[3]
Advances in CRISPR-Cas systems for RNA targeting, tracking and editing.

Biotechnol Adv. 2019-3-27

[4]
Structures, mechanisms and applications of RNA-centric CRISPR-Cas13.

Nat Chem Biol. 2024-6

[5]
Chemical Modifications in RNA Interference and CRISPR/Cas Genome Editing Reagents.

Methods Mol Biol. 2020

[6]
Recent advances in therapeutic recruitment of mammalian RNAi and bacterial CRISPR-Cas DNA interference pathways as emerging antiviral strategies.

Drug Discov Today. 2017-1

[7]
Determining the Specificity of Cascade Binding, Interference, and Primed Adaptation in the Type I-E CRISPR-Cas System.

mBio. 2018-4-17

[8]
Amide-Modified RNA: Using Protein Backbone to Modulate Function of Short Interfering RNAs.

Acc Chem Res. 2020-9-15

[9]
Functional-genetic approaches to understanding drug response and resistance.

Curr Opin Genet Dev. 2019-4-2

[10]
Programmable technologies to manipulate gene expression at the RNA level.

Curr Opin Chem Biol. 2021-10

引用本文的文献

[1]
The Dark Side of Vascular Aging: Noncoding Ribonucleic Acids in Heart Failure with Preserved Ejection Fraction.

Cells. 2025-8-16

[2]
Structure-Binding Relationship of 2-Amino-1,8-Naphthyridine Dimers: Role of Linkage Positions on DNA and RNA Recognition.

Chemistry. 2025-5-19

[3]
Click Conjugates of Artificial Ribonucleases: Sequence Specific Cleavage with Multiple Turnover.

Chemistry. 2025-5-27

[4]
The Druggable Transcriptome Project: From Chemical Probes to Precision Medicines.

Biochemistry. 2025-4-15

[5]
The NcRNA/Wnt axis in lung cancer: oncogenic mechanisms, remarkable indicators and therapeutic targets.

J Transl Med. 2025-3-14

本文引用的文献

[1]
Chasing LDL cholesterol to the bottom - PCSK9 in perspective.

Nat Cardiovasc Res. 2022-6

[2]
RNATACs: Multispecific small molecules targeting RNA by induced proximity.

Cell Chem Biol. 2024-6-20

[3]
G-Quadruplex mRNAs Silencing with Inducible Ribonuclease Targeting Chimera for Precision Tumor Therapy.

J Am Chem Soc. 2024-6-12

[4]
Small molecules modulating RNA splicing: a review of targets and future perspectives.

RSC Med Chem. 2024-1-11

[5]
Developing nucleoside tailoring strategies against SARS-CoV-2 via ribonuclease targeting chimera.

Sci Adv. 2024-4-12

[6]
Huntington's Disease Clinical Trials Corner: March 2024.

J Huntingtons Dis. 2024

[7]
Strategies for non-viral vectors targeting organs beyond the liver.

Nat Nanotechnol. 2024-4

[8]
Nedosiran: First Approval.

Drugs. 2023-12

[9]
Breaking barriers with tofersen: Enhancing therapeutic opportunities in amyotrophic lateral sclerosis.

Eur J Neurol. 2024-2

[10]
Intrinsic targeting of host RNA by Cas13 constrains its utility.

Nat Biomed Eng. 2024-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索