Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia.
Center for Mathematical Modeling in Drug Development, Sechenov First Moscow State Medical University, 8-2 Trubetskaya, 119991, Moscow, Russia; Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 1A M. Pirogovskaya Street, Moscow, 119435, Russia.
Eur J Med Chem. 2025 Jan 5;281:117013. doi: 10.1016/j.ejmech.2024.117013. Epub 2024 Oct 30.
The acquisition of multidrug resistance (MDR) to chemotherapy is a major obstacle to successful cancer treatment. Aiming to improve the potency of anthraquinone-derived antitumor compounds against MDR cancer cells, we employed a rational design approach to develop new heteroarene-fused anthraquinones. Shifting the carboxamide group in the naphtho[2,3-f]indole scaffold from the 3-position to 2 increased the lipophilicity and P-glycoprotein (P-gp) binding of the derivatives, potentially enhancing their ability to circumvent P-gp-mediated MDR. To validate the computations, we developed a scheme for heterocyclization into esters of naphtho[2,3-f]indole-2-carboxylic acid, based on the 5-endo-dig cyclization of 2-alkynyl-3-amino-1,4-dimethoxyanthraquinone under mild basic conditions using tetra-n-butylammonium fluoride (TBAF). The synthesized naphthoindole-2-carboxamides, particularly compound 1a bearing (S)-3-aminopyrrolidine in the carboxamide fragment, demonstrated the highest antiproliferative activity. Most importantly, 1a suppressed the growth of the P-gp-positive K562/4 leukemia tumor cell line (resistance index = 2.4), while its 3-isomer LCTA-2640 and Dox did not (RI = 125 and 140, respectively). Studies of intracellular uptake and distribution showed that 1a, unlike its 3-substituted isomer, effectively accumulated in resistant tumor cells, confirming the correlation between in silico and experimental data. The lead compound 1a interacts with DNA duplex and inhibits topoisomerase 1 but does not induce oxidative stress. Treatment with 1a increases the population of apoptotic cells in both K562 and K562/4 sublines, regardless of the cell cycle phase. Taken together, this work provides an interesting example of how a little modification in chemical structure can lead to striking differences in antitumor properties. In conclusion, we have identified a potent class of compounds that offer distinct advantages in combating resistant tumor cells.
获得对化疗的多药耐药性(MDR)是癌症治疗成功的主要障碍。为了提高蒽醌类抗肿瘤化合物对多药耐药性癌细胞的效力,我们采用合理的设计方法开发了新的杂芳基融合蒽醌。将萘并[2,3-f]吲哚骨架中酰胺基从 3 位移动到 2 位增加了衍生物的亲脂性和 P-糖蛋白(P-gp)结合能力,可能增强了它们规避 P-gp 介导的 MDR 的能力。为了验证计算结果,我们根据 2-炔基-3-氨基-1,4-二甲氧基蒽醌在温和碱性条件下通过四丁基氟化铵(TBAF)进行 5-endo-dig 环化,开发了一种将杂环化到萘并[2,3-f]吲哚-2-羧酸酯中的方案。合成的萘并吲哚-2-酰胺,特别是在酰胺片段中带有(S)-3-氨基吡咯烷的化合物 1a,表现出最高的抗增殖活性。最重要的是,1a 抑制了 P-gp 阳性 K562/4 白血病肿瘤细胞系的生长(耐药指数=2.4),而其 3-异构体 LCTA-2640 和 Dox 则没有(RI=125 和 140)。细胞内摄取和分布研究表明,与 3-取代异构体不同,1a 有效地在耐药肿瘤细胞中积累,证实了计算数据和实验数据之间的相关性。先导化合物 1a 与 DNA 双链相互作用并抑制拓扑异构酶 1,但不会诱导氧化应激。用 1a 处理可增加 K562 和 K562/4 亚系中凋亡细胞的数量,而与细胞周期阶段无关。总之,这项工作提供了一个有趣的例子,说明化学结构的微小改变如何导致抗肿瘤特性的显著差异。总之,我们已经确定了一类具有明显优势的化合物,可用于对抗耐药肿瘤细胞。