Zeng Guichun, Liang Xiayi, Ling Yuan, Zhu Xiaoqi, Wang Qin, Li Zelun, Liu Junjie, Wang Xiaobo, Qiu Guanhua, Yan Kangning, Wang Duo, Chen Jie
Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Tumor Hospital of Guangxi Medical University, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, Guangxi, China.
Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 224001, China.
Biomaterials. 2025 Apr;315:122944. doi: 10.1016/j.biomaterials.2024.122944. Epub 2024 Nov 2.
Radiofrequency ablation (RFA) therapy for hepatocellular carcinoma (HCC) suffers from incomplete ablation with tumor remnants, recurrence, and metastasis. To capture these matters, a calcium-based thermosensitizer (CBT) was constructed, which can swell the thermal ablation treatment. DMXAA was encapsulated within CaCO nanoparticles and surface-modified using PEG. DMXAA @CBTNps emanates continuous cavitation to enhance the RFA effect, lower RFA power, and shorten the RFA time by responding to the acidic tumor microenvironment and releasing carbon dioxide bubbles. Ca deposition to form calcification instigates the calcium death of the tumor and strengthens the thermal conductivity, wherein CBT fortifies the immunogenic cell death (ICD) of RFA. The vascular disruptor DMXAA is administered to the tumor site to impair the blood and nutrient supply to the tumor tissue. Calcium carbonate nanoparticles generate persistent carbon dioxide bubbles within the acidic microenvironment, leading to a sustained cavitation effect that enhances magneto-thermal conversion. This synergistic approach facilitates tumor vascular occlusion, thereby improving thermal ablation therapy. This strategy is different from previous thermal ablation treatments in that the CBT-released product Ca, the continuous cavitation effect of CO, and the vascular disrupting agent can accelerate the conversion of energy from electromagnetic energy to thermal energy and reduce the heat loss, which significantly amplifies the effect of thermal ablation treatment of HCC and intensifies ICD. Therefore, this research provides a promising avenue and therapeutic platform for clinical liver cancer treatment.
用于肝细胞癌(HCC)的射频消融(RFA)治疗存在肿瘤残留、复发和转移导致的消融不完全问题。为了解决这些问题,构建了一种基于钙的热敏剂(CBT),其可增强热消融治疗效果。将二甲基苯并噻二嗪(DMXAA)封装在碳酸钙纳米颗粒中并用聚乙二醇进行表面改性。DMXAA@CBT纳米颗粒通过响应酸性肿瘤微环境并释放二氧化碳气泡,产生持续的空化作用,以增强RFA效果、降低RFA功率并缩短RFA时间。钙沉积形成钙化促使肿瘤发生钙死亡并增强热导率,其中CBT增强了RFA的免疫原性细胞死亡(ICD)。血管破坏剂DMXAA被施用于肿瘤部位,以破坏肿瘤组织的血液和营养供应。碳酸钙纳米颗粒在酸性微环境中产生持续的二氧化碳气泡,导致持续的空化效应,增强磁热转换。这种协同方法有助于肿瘤血管闭塞,从而改善热消融治疗。该策略与先前的热消融治疗不同之处在于,CBT释放的产物钙、CO的持续空化效应以及血管破坏剂可加速能量从电磁能向热能的转换并减少热损失,这显著放大了HCC热消融治疗的效果并增强了ICD。因此,本研究为临床肝癌治疗提供了一条有前景的数据通路和治疗平台。