Suppr超能文献

一种用于通过眼底图像改进青光眼筛查的通用计算机视觉模型。

A generalised computer vision model for improved glaucoma screening using fundus images.

作者信息

Chaurasia Abadh K, Liu Guei-Sheung, Greatbatch Connor J, Gharahkhani Puya, Craig Jamie E, Mackey David A, MacGregor Stuart, Hewitt Alex W

机构信息

Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.

Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.

出版信息

Eye (Lond). 2025 Jan;39(1):109-117. doi: 10.1038/s41433-024-03388-4. Epub 2024 Nov 5.

Abstract

IMPORTANCE

Worldwide, glaucoma is a leading cause of irreversible blindness. Timely detection is paramount yet challenging, particularly in resource-limited settings. A novel, computer vision-based model for glaucoma screening using fundus images could enhance early and accurate disease detection.

OBJECTIVE

To develop and validate a generalised deep-learning-based algorithm for screening glaucoma using fundus image.

DESIGN, SETTING AND PARTICIPANTS: The glaucomatous fundus data were collected from 20 publicly accessible databases worldwide, resulting in 18,468 images from multiple clinical settings, of which 10,900 were classified as healthy and 7568 as glaucoma. All the data were evaluated and downsized to fit the model's input requirements. The potential model was selected from 20 pre-trained models and trained on the whole dataset except Drishti-GS. The best-performing model was further trained to classify healthy and glaucomatous fundus images using Fastai and PyTorch libraries.

MAIN OUTCOMES AND MEASURES

The model's performance was compared against the actual class using the area under the receiver operating characteristic (AUROC), sensitivity, specificity, accuracy, precision and the F1-score.

RESULTS

The high discriminative ability of the best-performing model was evaluated on a dataset comprising 1364 glaucomatous discs and 2047 healthy discs. The model reflected robust performance metrics, with an AUROC of 0.9920 (95% CI: 0.9920-0.9921) for both the glaucoma and healthy classes. The sensitivity, specificity, accuracy, precision, recall and F1-scores were consistently higher than 0.9530 for both classes. The model performed well on an external validation set of the Drishti-GS dataset, with an AUROC of 0.8751 and an accuracy of 0.8713.

CONCLUSIONS AND RELEVANCE

This study demonstrated the high efficacy of our classification model in distinguishing between glaucomatous and healthy discs. However, the model's accuracy slightly dropped when evaluated on unseen data, indicating potential inconsistencies among the datasets-the model needs to be refined and validated on larger, more diverse datasets to ensure reliability and generalisability. Despite this, our model can be utilised for screening glaucoma at the population level.

摘要

重要性

在全球范围内,青光眼是不可逆失明的主要原因。及时检测至关重要,但具有挑战性,尤其是在资源有限的环境中。一种使用眼底图像的基于计算机视觉的新型青光眼筛查模型可以提高疾病的早期准确检测。

目的

开发并验证一种基于深度学习的通用算法,用于使用眼底图像筛查青光眼。

设计、设置和参与者:青光眼眼底数据从全球20个可公开访问的数据库中收集,得到来自多个临床环境的18468张图像,其中10900张被分类为健康图像,7568张为青光眼图像。所有数据都经过评估并进行了尺寸调整,以符合模型的输入要求。潜在模型从20个预训练模型中选择,并在除Drishti - GS之外的整个数据集上进行训练。使用Fastai和PyTorch库对表现最佳的模型进行进一步训练,以对健康和青光眼眼底图像进行分类。

主要结果和指标

使用受试者工作特征曲线下面积(AUROC)、灵敏度、特异性、准确性、精确率和F1分数,将模型的性能与实际类别进行比较。

结果

在一个包含1364个青光眼视盘和2047个健康视盘的数据集上评估了表现最佳的模型的高判别能力。该模型反映出强大的性能指标,青光眼和健康类别两者的AUROC均为0.9920(95%置信区间:0.9920 - 0.9921)。两类的灵敏度、特异性、准确性、精确率、召回率和F1分数始终高于0.9530。该模型在Drishti - GS数据集的外部验证集上表现良好,AUROC为0.8751,准确性为0.8713。

结论和相关性

本研究证明了我们的分类模型在区分青光眼和健康视盘方面具有高效性。然而,在对未见数据进行评估时,模型的准确性略有下降,表明数据集之间可能存在不一致性——该模型需要在更大、更多样化的数据集上进行优化和验证,以确保可靠性和通用性。尽管如此,我们的模型可用于人群水平的青光眼筛查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e3/11732976/5d942d73b057/41433_2024_3388_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验