Fachbereich Informatik, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany.
Deutsche Forschungszentrum für KünstlicheIntelligenz GmbH (DFKI), 67663, Kaiserslautern, Germany.
BMC Med Inform Decis Mak. 2019 Jul 17;19(1):136. doi: 10.1186/s12911-019-0842-8.
With the advancement of powerful image processing and machine learning techniques, Computer Aided Diagnosis has become ever more prevalent in all fields of medicine including ophthalmology. These methods continue to provide reliable and standardized large scale screening of various image modalities to assist clinicians in identifying diseases. Since optic disc is the most important part of retinal fundus image for glaucoma detection, this paper proposes a two-stage framework that first detects and localizes optic disc and then classifies it into healthy or glaucomatous.
The first stage is based on Regions with Convolutional Neural Network (RCNN) and is responsible for localizing and extracting optic disc from a retinal fundus image while the second stage uses Deep Convolutional Neural Network to classify the extracted disc into healthy or glaucomatous. Unfortunately, none of the publicly available retinal fundus image datasets provides any bounding box ground truth required for disc localization. Therefore, in addition to the proposed solution, we also developed a rule-based semi-automatic ground truth generation method that provides necessary annotations for training RCNN based model for automated disc localization.
The proposed method is evaluated on seven publicly available datasets for disc localization and on ORIGA dataset, which is the largest publicly available dataset with healthy and glaucoma labels, for glaucoma classification. The results of automatic localization mark new state-of-the-art on six datasets with accuracy reaching 100% on four of them. For glaucoma classification we achieved Area Under the Receiver Operating Characteristic Curve equal to 0.874 which is 2.7% relative improvement over the state-of-the-art results previously obtained for classification on ORIGA dataset.
Once trained on carefully annotated data, Deep Learning based methods for optic disc detection and localization are not only robust, accurate and fully automated but also eliminates the need for dataset-dependent heuristic algorithms. Our empirical evaluation of glaucoma classification on ORIGA reveals that reporting only Area Under the Curve, for datasets with class imbalance and without pre-defined train and test splits, does not portray true picture of the classifier's performance and calls for additional performance metrics to substantiate the results.
随着强大的图像处理和机器学习技术的进步,计算机辅助诊断在包括眼科在内的医学各个领域变得越来越普遍。这些方法继续提供可靠和标准化的各种图像模式的大规模筛查,以协助临床医生识别疾病。由于视盘是青光眼检测中视网膜眼底图像最重要的部分,因此本文提出了一个两阶段框架,首先检测和定位视盘,然后将其分类为健康或青光眼。
第一阶段基于卷积神经网络 (RCNN),负责从视网膜眼底图像中定位和提取视盘,而第二阶段则使用深度卷积神经网络将提取的视盘分类为健康或青光眼。不幸的是,现有的任何公开的视网膜眼底图像数据集都没有提供视盘定位所需的边界框真实数据。因此,除了提出的解决方案外,我们还开发了一种基于规则的半自动真实数据生成方法,为基于 RCNN 的模型提供了必要的注释,用于自动化视盘定位的训练。
所提出的方法在七个公开的视盘定位数据集和 ORIGA 数据集上进行了评估,ORIGA 数据集是最大的公开的包含健康和青光眼标签的数据集,用于青光眼分类。自动定位的结果在六个数据集上创下了新的技术水平,其中四个数据集的准确率达到 100%。对于青光眼分类,我们获得了 0.874 的接收器操作特征曲线下面积,比以前在 ORIGA 数据集上的分类获得的技术水平提高了 2.7%。
一旦在精心注释的数据上进行训练,基于深度学习的视盘检测和定位方法不仅具有鲁棒性、准确性和完全自动化,而且还消除了对数据集依赖的启发式算法的需求。我们对 ORIGA 上青光眼分类的实证评估表明,仅报告曲线下面积,对于具有类别不平衡且没有预定义训练和测试分割的数据集,无法描绘分类器性能的真实情况,并需要额外的性能指标来证实结果。