Clinical Institute for Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia.
Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia.
Sci Rep. 2024 Nov 5;14(1):26778. doi: 10.1038/s41598-024-78270-0.
This study evaluates long-read and short-read sequencing for mitochondrial DNA (mtDNA) heteroplasmy detection. 592,315 bootstrapped datasets generated from two single-nucleotide mismatched ultra-deep sequenced mtDNA samples were used to assess basecalling error and accuracy, limit of heteroplasmy detection, and heteroplasmy detection across various coverage depths. Results showed high Phred scores of data with GC-rich sequence bias for long reads. Limit of detection of 12% heteroplasmy was identified, showing strong correlation (R ≥ 0.955) with expected heteroplasmy but underreporting tendency of high-level variants. Nanopore sequencing shows potential for direct applicability in mitochondrial diseases diagnostics, but stringent validation processes to ensure diagnostic result quality are required.
本研究评估了长读长和短读长测序在检测线粒体 DNA(mtDNA)异质性方面的应用。使用来自两个单核苷酸错配超深度测序 mtDNA 样本的 592,315 个引导数据集来评估碱基调用错误和准确性、异质性检测的极限以及在不同覆盖深度下的异质性检测。结果表明,长读长的 GC 丰富序列偏倚具有高的 Phred 分数。检测到 12%异质性的极限,与预期的异质性具有很强的相关性(R≥0.955),但对高水平变异的报告倾向较低。纳米孔测序显示出在线粒体疾病诊断中的直接应用潜力,但需要严格的验证过程来确保诊断结果的质量。