Honkamäki Laura, Kulta Oskari, Puistola Paula, Hopia Karoliina, Emeh Promise, Isosaari Lotta, Mörö Anni, Narkilahti Susanna
Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland.
Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland.
Adv Healthc Mater. 2025 Jan;14(1):e2402504. doi: 10.1002/adhm.202402504. Epub 2024 Nov 6.
Neurons form predefined connections and innervate target tissues through elongating axons, which are crucial for the development, maturation, and function of these tissues. However, innervation is often overlooked in tissue engineering (TE) applications. Here, multimaterial 3D bioprinting is used to develop a novel 3D axonal guidance structure in vitro. The approach uses the stiffness difference of acellular hyaluronic acid-based bioink printed as two alternating, parallel-aligned filaments. The structure has soft passages incorporated with guidance cues for axonal elongation while the stiff bioink acts as a structural support and contact guidance. The mechanical properties and viscosity differences of the bioinks are confirmed. Additionally, human pluripotent stem cell (hPSC) -derived neurons form a 3D neuronal network in the softer bioink supplemented with guidance cues whereas the stiffer restricts the network formation. Successful 3D multimaterial bioprinting of the axonal structure enables complete innervation by peripheral neurons via soft passages within 14 days of culture. This model provides a novel, stable, and long-term platform for studies of 3D innervation and axonal dynamics in health and disease.
神经元通过延长轴突形成预先确定的连接并支配靶组织,这对于这些组织的发育、成熟和功能至关重要。然而,在组织工程(TE)应用中,神经支配常常被忽视。在此,多材料3D生物打印被用于在体外构建一种新型的3D轴突导向结构。该方法利用了基于脱细胞透明质酸的生物墨水打印成两条交替的、平行排列的细丝时的刚度差异。该结构具有柔软的通道,并结合了轴突伸长的导向线索,而坚硬的生物墨水则作为结构支撑和接触导向。确认了生物墨水的力学性能和粘度差异。此外,人多能干细胞(hPSC)衍生的神经元在补充了导向线索的较软生物墨水中形成3D神经元网络,而较硬的生物墨水则限制了网络形成。轴突结构的成功3D多材料生物打印使得外周神经元能够在培养14天内通过柔软通道实现完全神经支配。该模型为健康和疾病状态下的3D神经支配和轴突动力学研究提供了一个新颖、稳定且长期的平台。