Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland.
Tays Eye Centre, Tampere University Hospital, Tampere, Finland.
Stem Cell Res Ther. 2024 Mar 14;15(1):81. doi: 10.1186/s13287-024-03672-w.
Human corneal endothelial cells lack regenerative capacity through cell division in vivo. Consequently, in the case of trauma or dystrophy, the only available treatment modality is corneal tissue or primary corneal endothelial cell transplantation from cadaveric donor which faces a high global shortage. Our ultimate goal is to use the state-of-the-art 3D-bioprint technology for automated production of human partial and full-thickness corneal tissues using human stem cells and functional bioinks. In this study, we explore the feasibility of bioprinting the corneal endothelium using human pluripotent stem cell derived corneal endothelial cells and hydrazone crosslinked hyaluronic acid bioink.
Corneal endothelial cells differentiated from human pluripotent stem cells were bioprinted using optimized hydrazone crosslinked hyaluronic acid based bioink. Before the bioprinting process, the biocompatibility of the bioink with cells was first analyzed with transplantation on ex vivo denuded rat and porcine corneas as well as on denuded human Descemet membrane. Subsequently, the bioprinting was proceeded and the viability of human pluripotent stem cell derived corneal endothelial cells were verified with live/dead stainings. Histological and immunofluorescence stainings involving ZO1, Na/K-ATPase and CD166 were used to confirm corneal endothelial cell phenotype in all experiments. Additionally, STEM121 marker was used to identify human cells from the ex vivo rat and porcine corneas.
The bioink, modified for human pluripotent stem cell derived corneal endothelial cells successfully supported both the viability and printability of the cells. Following up to 10 days of ex vivo transplantations, STEM121 positive cells were confirmed on the Descemet membrane of rat and porcine cornea demonstrating the biocompatibility of the bioink. Furthermore, biocompatibility was validated on denuded human Descemet membrane showing corneal endothelial -like characteristics. Seven days post bioprinting, the corneal endothelial -like cells were viable and showed polygonal morphology with expression and native-like localization of ZO-1, Na/K-ATPase and CD166. However, mesenchymal-like cells were observed in certain areas of the cultures, spreading beneath the corneal endothelial-like cell layer.
Our results demonstrate the successful printing of human pluripotent stem cell derived corneal endothelial cells using covalently crosslinked hyaluronic acid bioink. This approach not only holds promise for a corneal endothelium transplants but also presents potential applications in the broader mission of bioprinting the full-thickness human cornea.
人眼角膜内皮细胞在体内通过细胞分裂缺乏再生能力。因此,在创伤或营养不良的情况下,唯一可用的治疗方法是从尸体供体进行角膜组织或原发性角膜内皮细胞移植,而这在全球范围内都面临着很高的短缺。我们的最终目标是使用最先进的 3D 生物打印技术,使用人干细胞和功能性生物墨水自动生产人部分和全厚角膜组织。在这项研究中,我们探索了使用人多能干细胞衍生的角膜内皮细胞和酰肼交联透明质酸生物墨水生物打印角膜内皮的可行性。
使用优化的酰肼交联透明质酸基生物墨水对人多能干细胞分化的角膜内皮细胞进行生物打印。在生物打印过程之前,首先通过将生物墨水移植到离体去上皮的大鼠和猪角膜以及去上皮的人德斯美膜上来分析生物墨水与细胞的生物相容性。随后,进行生物打印,并通过活/死染色验证人多能干细胞衍生的角膜内皮细胞的活力。使用涉及 ZO1、Na/K-ATP 酶和 CD166 的组织学和免疫荧光染色来确认所有实验中的角膜内皮细胞表型。此外,STEM121 标记物用于鉴定离体大鼠和猪角膜中的人细胞。
经过修饰以适应人多能干细胞衍生的角膜内皮细胞的生物墨水成功地支持了细胞的活力和可打印性。在体外移植后长达 10 天的时间里,在大鼠和猪角膜的德斯美膜上确认了 STEM121 阳性细胞,证明了生物墨水的生物相容性。此外,在去上皮的人德斯美膜上进行的生物相容性验证显示出了角膜内皮样特征。生物打印后 7 天,角膜内皮样细胞仍然存活,呈现多边形形态,ZO-1、Na/K-ATP 酶和 CD166 的表达和天然定位。然而,在培养物的某些区域观察到间充质样细胞,在角膜内皮样细胞层下方扩散。
我们的结果表明,使用共价交联透明质酸生物墨水成功地打印了人多能干细胞衍生的角膜内皮细胞。这种方法不仅为角膜内皮移植提供了希望,而且在更广泛的全厚人角膜生物打印任务中也具有潜在的应用。