Suppr超能文献

错误披露评估障碍中文版(C-BEDA)工具的心理测量学特性

Psychometric Properties of Chinese Version of the Barriers to Error Disclosure Assessment (C-BEDA) Tool.

作者信息

Huang Rong-Rong, Xie Yu-Sheng, Chen Gui-Ru, Liu Zhao-Qing

机构信息

Department of Burns and Plastic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China.

School of Nursing, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China.

出版信息

Risk Manag Healthc Policy. 2024 Nov 1;17:2623-2634. doi: 10.2147/RMHP.S477701. eCollection 2024.

Abstract

AIM

The Barriers to Error Disclosure Assessment (BEDA) tool is used to measure barriers to the disclosure of medical errors by healthcare professionals. This study aimed to evaluate the psychometric properties of the Chinese version of the BEDA (C-BEDA).

BACKGROUND

The culture of disclosure and transparency in response to medical errors has been recommended in recent years. However, there are no relevant assessment tools for measuring barriers to disclosing medical errors in China.

METHODS

The C-BEDA tool underwent translation, back translation, cross-cultural adaptation in a pilot study. It was tested with 1254 healthcare professionals in Guizhou and Sichuan Provinces, China. The content validity index (CVI) was used to evaluate the content validity of the C-BEDA, and exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) were used to evaluate its structural validity. The Cronbach's α coefficient and test-retest reliability were evaluated to determine its reliability.

RESULTS

Three factors were extracted by EFA that explained 65.892% of the total variance of the C-BEDA tool. CFA showed a good fit for a three-factor structure with acceptable values: goodness-of-fit index=0.939; adjusted goodness-of-fit index=0.911; incremental fit index=0.967; comparative fit index=0.967; partial least squares path modeling for confirmatory factor analysis=0.735; and root mean square error of approximation=0.058. The item-level content validity index ranged from 0.86 to 1.00, and the average scale-level content validity index was 0.98. The Cronbach's α coefficient (0.909) and test-retest reliability (0.86) were acceptable.

CONCLUSION

The C-BEDA toolis a valid and reliable tool for assessing the extent of barriers to error disclosure among Chinese healthcare professionals.

摘要

目的

医疗差错披露评估障碍(BEDA)工具用于衡量医疗保健专业人员披露医疗差错的障碍。本研究旨在评估中文版BEDA(C-BEDA)的心理测量特性。

背景

近年来,针对医疗差错的披露和透明度文化受到了推荐。然而,在中国,尚无用于衡量披露医疗差错障碍的相关评估工具。

方法

C-BEDA工具在一项试点研究中进行了翻译、回译和跨文化调适。在中国贵州省和四川省的1254名医疗保健专业人员中进行了测试。采用内容效度指数(CVI)评估C-BEDA的内容效度,采用探索性因素分析(EFA)和验证性因素分析(CFA)评估其结构效度。评估Cronbach's α系数和重测信度以确定其信度。

结果

EFA提取了三个因素,解释了C-BEDA工具总方差的65.892%。CFA显示三因素结构拟合良好,各项值均可接受:拟合优度指数=0.939;调整后拟合优度指数=0.911;增值拟合指数=0.967;比较拟合指数=0.967;验证性因素分析的偏最小二乘路径模型=0.735;近似均方根误差=0.058。项目层面的内容效度指数范围为0.86至1.00,平均量表层面的内容效度指数为0.98。Cronbach's α系数(0.909)和重测信度(0.86)均可接受。

结论

C-BEDA工具是评估中国医疗保健专业人员差错披露障碍程度的有效且可靠的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64c6/11536977/27f27eb2673c/RMHP-17-2623-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验