Suppr超能文献

氢自由基环境中化学稳定的IV-V族过渡金属碳化物薄膜

Chemically Stable Group IV-V Transition Metal Carbide Thin Films in Hydrogen Radical Environments.

作者信息

Rehman Abdul, van de Kruijs Robbert W E, van den Beld Wesley T E, Sturm Jacobus M, Ackermann Marcelo

机构信息

Industrial Focus Group XUV Optics, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede 7522NB, The Netherlands.

出版信息

J Phys Chem C Nanomater Interfaces. 2024 Oct 22;128(43):18524-18533. doi: 10.1021/acs.jpcc.4c04822. eCollection 2024 Oct 31.

Abstract

Hydrogen is a crucial element in the green energy transition. However, its tendency to react with and diffuse into surrounding materials poses a significant challenge. Therefore, developing coatings to protect system components in hydrogen environments (molecular, radicals (H*), and plasma) is essential. In this work, we report group IV-V transition metal carbide (TMC) thin films as potential candidates for protective coatings in H* environments at elevated temperatures. We expose TiC, ZrC, HfC, VC, NbC, TaC, and CoC thin films, with native surface oxycarbides/oxides (TMO C /TMO ), to H* at elevated temperatures. Based on X-ray photoelectron spectroscopy performed on the samples before and after H*-exposure, we identify three classes of TMCs. HfC, ZrC, TiC, TaC, NbC, and VC (class A) are found to have a stable carbidic-C (TM-C) content, with a further subdivision into partial (class A1: HfC, ZrC, and TiC) and strong (class A2: TaC, NbC, and VC) surface deoxidation. In contrast to class A, a strong carbide reduction is observed in CoC (class B), along with a strong surface deoxidation. The H* interaction with TMC/TMO C /TMO is hypothesized to entail three processes: (i) hydrogenation of surface C/O atoms, (ii) formation of CH /OH species, and (iii) subsurface C/O atom diffusion to the surface vacancies. The number of adsorbed H atoms required to form CH /OH species (i) and the corresponding thermodynamic energy barriers (ii) are estimated based on the change in the Gibbs free energy (Δ) for the reduction reactions of TMCs and TMO . Hydrogenation of surface carbidic-C atoms is proposed to limit the reduction of TMCs, whereas the deoxidation of TMC surfaces is governed by the thermodynamic energy barrier for forming HO.

摘要

氢是绿色能源转型中的关键元素。然而,其与周围材料发生反应并扩散到这些材料中的倾向带来了重大挑战。因此,开发用于保护氢环境(分子、自由基(H*)和等离子体)中系统组件的涂层至关重要。在这项工作中,我们报告了IV-V族过渡金属碳化物(TMC)薄膜作为高温下H环境中保护涂层的潜在候选材料。我们将具有原生表面氧碳化物/氧化物(TMO C /TMO )的TiC、ZrC、HfC、VC、NbC、TaC和CoC薄膜在高温下暴露于H。基于对H暴露前后样品进行的X射线光电子能谱分析,我们确定了三类TMC。发现HfC、ZrC、TiC、TaC、NbC和VC(A类)具有稳定的碳化物-C(TM-C)含量,进一步细分为部分(A1类:HfC、ZrC和TiC)和强烈(A2类:TaC、NbC和VC)表面脱氧。与A类不同,在CoC(B类)中观察到强烈的碳化物还原以及强烈的表面脱氧。假设H与TMC/TMO C /TMO 的相互作用涉及三个过程:(i)表面C/O原子的氢化,(ii)CH /OH 物种的形成,以及(iii)次表面C/O原子扩散到表面空位。基于TMC和TMO还原反应的吉布斯自由能(Δ)变化,估计形成CH /OH 物种(i)所需的吸附H原子数以及相应 的热力学能垒(ii)。表面碳化物-C原子的氢化被认为限制了TMC的还原,而TMC表面的脱氧则由形成HO的热力学能垒控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/691e/11533205/629c8916d413/jp4c04822_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验