Twigg Marsailidh M, Di Marco Chiara F, McGhee Elizabeth A, Braban Christine F, Nemitz Eiko, Brown Richard J C, Blakley Kevin C, Leeson Sarah R, Sanocka Agnieszka, Green David C, Priestman Max, Riffault Veronique, Bourin Aude, Minguillón Maria Cruz, Via Marta, Ovadnevaite Jurgita, Ceburnis Darius, O'Dowd Colin, Poulain Laurent, Stieger Bastian, Makkonen Ulla, Rumsey Ian C, Beachley Gregory, Walker John T, Butterfield David M
UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, EH26 0QB, UK.
National Physical Laboratory, Hampton Road, Teddington, London, TW11 0LW, UK.
Atmos Environ (1994). 2023 Dec 15;315:120148. doi: 10.1016/j.atmosenv.2023.120148.
Under the EU Air Quality Directive (AQD) 2008/50/EC member states are required to undertake routine monitoring of PM composition at background stations. The AQD states for PM speciation this should include at least: nitrate , sulfate , chloride (Cl), ammonium (NH4), sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), elemental carbon (EC) and organic carbon (OC). Until 2017, it was the responsibility of each country to determine the methodology used to report the composition for the inorganic components of PM. In August 2017 a European standard method of measurement of PM inorganic chemical components ( , Cl, , Na, K, Mg, Ca) as deposited on filters (EN16913:2017) was published. From August 2019 this then became the European standard method. This filter method is labour-intensive and provides limited time resolution and is prone to losses of volatile compounds. There is therefore increasing interest in the use of alternative automated methods. For example, the UK reports hourly PM chemical composition using the Monitor for AeRosols and Gases in Ambient air (MARGA, Metrohm, NL). This study is a pre-assessment review of available data to demonstrate if or to what extent equivalence is possible using either the MARGA or other available automatic methods, including the Aerosol Chemical Speciation Monitor (ACSM, Aerodyne Research Inc. US) and the Ambient Ion Monitor (AIM, URG, US). To demonstrate equivalence three objectives were to be met. The first two objectives focused on data capture and were met by all three instruments. The third objective was to have less than a 50% expanded uncertainty compared to the reference method for each species. Analysis of this objective was carried out using existing paired datasets available from different regions around the world. It was found that the MARGA (2006-2019 model) had the potential to demonstrate equivalence for all species in the standard, though it was only through a combination of case studies that it passed uncertainty criteria. The ACSM has the potential to demonstrate equivalence for , and in some conditions , but did not for Cl due to its inability to quantify refractory aerosol such as sea salt. The AIM has the potential for , , , Cl and Mg. Future investigations are required to determine if the AIM could be optimised to meet the expanded uncertainty criterion for Na, K and Ca. The recommendation is that a second stage to demonstrate equivalence is required which would include both laboratory and field studies of the three candidate methods and any other technologies identified with the potential to report the required species.
根据欧盟《空气质量指令》(AQD)2008/50/EC,成员国需要在背景监测站对颗粒物(PM)成分进行常规监测。该指令规定,对于PM的成分分析,至少应包括:硝酸盐、硫酸盐、氯化物(Cl)、铵(NH₄)、钠(Na)、钾(K)、镁(Mg)、钙(Ca)、元素碳(EC)和有机碳(OC)。直到2017年,确定用于报告PM无机成分组成的方法一直是每个国家的责任。2017年8月,一种用于测量沉积在滤膜上的PM无机化学成分( 、Cl、 、Na、K、Mg、Ca)的欧洲标准方法(EN16913:2017)发布。从2019年8月起,这成为了欧洲标准方法。这种滤膜方法劳动强度大,时间分辨率有限,且容易导致挥发性化合物损失。因此,人们对使用替代自动方法的兴趣与日俱增。例如,英国使用环境空气中气溶胶和气体监测仪(MARGA,万通,荷兰)每小时报告一次PM化学成分。本研究是对现有数据进行预评估审查以证明使用MARGA或其他可用自动方法(包括气溶胶化学形态监测仪(ACSM,美国Aerodyne Research Inc.)和环境离子监测仪(AIM,美国URG))是否可能实现等效性或在何种程度上实现等效性。为了证明等效性,需要满足三个目标。前两个目标侧重于数据采集,这三种仪器均已实现。第三个目标是与每种物种的参考方法相比,扩展不确定度小于50%。使用来自世界各地不同地区的现有配对数据集对该目标进行了分析。结果发现,MARGA(2006 - 2019型号)有可能证明对标准中的所有物种均具有等效性,不过只是通过案例研究的组合才通过了不确定度标准。ACSM有可能证明对 、 和在某些条件下的 具有等效性,但对于Cl不具有等效性,因为它无法量化诸如海盐等难熔气溶胶。AIM对 、 、 、Cl和Mg具有等效性潜力。未来需要进行调查,以确定AIM是否可以优化以满足Na、K和Ca的扩展不确定度标准。建议需要进行第二阶段以证明等效性,这将包括对这三种候选方法以及任何其他具有报告所需物种潜力的已识别技术进行实验室和现场研究。