Suppr超能文献

基于深度学习的锥束计算机断层扫描图像中正畸诱导牙根吸收的自动三维定量分析

Automatic 3-dimensional quantification of orthodontically induced root resorption in cone-beam computed tomography images based on deep learning.

作者信息

Zheng Qianhan, Ma Lei, Wu Yongjia, Gao Yu, Li Huimin, Lin Jiaqi, Qing Shuhong, Long Dan, Chen Xuepeng, Zhang Weifang

机构信息

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China.

Department of Control Science and Engineering, School of Electronics and Information Engineering, Tongji University, Shanghai, China.

出版信息

Am J Orthod Dentofacial Orthop. 2025 Feb;167(2):188-201. doi: 10.1016/j.ajodo.2024.09.009. Epub 2024 Nov 4.

Abstract

INTRODUCTION

Orthodontically induced root resorption (OIRR) is a common and undesirable consequence of orthodontic treatment. Traditionally, studies employ manual methods to conduct 3-dimensional quantitative analysis of OIRR via cone-beam computed tomography (CBCT), which is often subjective and time-consuming. With advancements in computer technology, deep learning-based approaches have gained traction in medical image processing. This study presents a deep learning-based model for the fully automatic extraction of root volume information and the localization of root resorption from CBCT images.

METHODS

In this cross-sectional, retrospective study, 4534 teeth from 105 patients were used to train and validate an automatic model for OIRR quantification. The protocol encompassed several steps: preprocessing of CBCT images involving automatic tooth segmentation and conversion into point clouds, followed by segmentation of tooth crowns and roots via the Dynamic Graph Convolutional Neural Network. The root volume was subsequently calculated, and OIRR localization was performed. The intraclass correlation coefficient was employed to validate the consistency between the automatic model and manual measurements.

RESULTS

The proposed method strongly correlated with manual measurements in terms of root volume and OIRR severity assessment. The intraclass correlation coefficient values for average volume measurements at each tooth position exceeded 0.95 (P <0.001), with the accuracy of different OIRR severity classifications surpassing 0.8.

CONCLUSIONS

The proposed methodology provides automatic and reliable tools for OIRR assessment, offering potential improvements in orthodontic treatment planning and monitoring.

摘要

引言

正畸诱导性牙根吸收(OIRR)是正畸治疗常见且不良的后果。传统上,研究采用手动方法通过锥形束计算机断层扫描(CBCT)对OIRR进行三维定量分析,这通常具有主观性且耗时。随着计算机技术的进步,基于深度学习的方法在医学图像处理中受到关注。本研究提出了一种基于深度学习的模型,用于从CBCT图像中全自动提取牙根体积信息并定位牙根吸收部位。

方法

在这项横断面回顾性研究中,使用来自105名患者的4534颗牙齿训练和验证用于OIRR量化的自动模型。该方案包括几个步骤:CBCT图像的预处理,包括自动牙齿分割并转换为点云,然后通过动态图卷积神经网络对牙冠和牙根进行分割。随后计算牙根体积并进行OIRR定位。使用组内相关系数来验证自动模型与手动测量之间的一致性。

结果

所提出的方法在牙根体积和OIRR严重程度评估方面与手动测量高度相关。每个牙齿位置的平均体积测量的组内相关系数值超过0.95(P<0.001),不同OIRR严重程度分类的准确率超过0.8。

结论

所提出的方法为OIRR评估提供了自动且可靠的工具,在正畸治疗计划和监测方面具有潜在的改进作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验