Tanabe Masahiro, Kawano Yosuke, Inoue Atsuo, Miyoshi Keisuke, Furutani Haruki, Ihara Kenichiro, Higashi Mayumi, Ito Katsuyoshi
Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
Jpn J Radiol. 2025 Mar;43(3):455-462. doi: 10.1007/s11604-024-01687-0. Epub 2024 Nov 6.
To assess the image quality of a modified Fast three-dimensional (Fast 3D) mode wheel with sequential data filling (mFast 3D wheel) combined with a deep learning denoising technique (Advanced Intelligent Clear-IQ Engine [AiCE]) in contrast-enhanced (CE) 3D dynamic magnetic resonance (MR) imaging of the abdomen during a single breath hold (BH) by intra-individual comparison with compressed sensing (CS) with AiCE.
Forty-two patients who underwent multiphasic CE dynamic MRI obtained with both mFast 3D wheel using AiCE and CS using AiCE in the same patient were retrospectively included. The conspicuity, artifacts, image quality, signal intensity ratio (SIR), signal-to-noise ratio (SNR), contrast ratio (CR), and contrast enhancement ratio (CER) of the organs were compared between these 2 sequences.
Conspicuity, artifacts, and overall image quality were significantly better in the mFast 3D wheel using AiCE than in the CS with AiCE (all p < 0.001). The SNR of the liver in CS with AiCE was significantly better than that in the mFast 3D wheel using AiCE (p < 0.01). There were no significant differences in the SIR, CR, and CER between the two sequences.
A mFast 3D wheel using AiCE as a deep learning denoising technique improved the conspicuity of abdominal organs and intrahepatic structures and the overall image quality with sufficient contrast enhancement effects, making it feasible for BH 3D CE dynamic MR imaging of the abdomen.
通过与采用深度学习去噪技术(高级智能清晰图像质量增强引擎 [AiCE])的压缩感知(CS)进行个体内比较,评估结合深度学习去噪技术(高级智能清晰图像质量增强引擎 [AiCE])的改良快速三维(Fast 3D)模式轮序贯数据填充(mFast 3D 轮)在腹部对比增强(CE)三维动态磁共振(MR)成像单次屏气(BH)期间的图像质量。
回顾性纳入 42 例患者,这些患者在同一患者身上分别采用使用 AiCE 的 mFast 3D 轮和使用 AiCE 的 CS 进行了多期 CE 动态 MRI 检查。比较这两种序列之间各器官的清晰度、伪影、图像质量、信号强度比(SIR)、信噪比(SNR)、对比率(CR)和对比增强率(CER)。
使用 AiCE 的 mFast 3D 轮在清晰度、伪影和整体图像质量方面明显优于使用 AiCE 的 CS(所有 p < 0.001)。使用 AiCE 的 CS 中肝脏的 SNR 明显优于使用 AiCE 的 mFast 3D 轮(p < 0.01)。两种序列之间的 SIR、CR 和 CER 无显著差异。
使用 AiCE 作为深度学习去噪技术的 mFast 3D 轮改善了腹部器官和肝内结构的清晰度以及整体图像质量,同时具有足够的对比增强效果,使得腹部 BH 3D CE 动态 MR 成像可行。