Diagnostic Radiology, Faculty of Life Sciences, 13205Kumamoto University, Kumamoto-shi, Japan.
Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama-shi, Japan.
Can Assoc Radiol J. 2021 Feb;72(1):120-127. doi: 10.1177/0846537119900469. Epub 2020 Feb 19.
To evaluate the effects of deep learning reconstruction (DLR) in qualitative and quantitative image quality of non-contrast magnetic resonance coronary angiography (MRCA).
Ten healthy volunteers underwent conventional MRCA (C-MRCA) and high-resolution (HR) MRCA on a 3T magnetic resonance imaging with a voxel size of 1.8 × 1.1 × 1.7 mm and 1.8 × 0.6 × 1.0 mm, respectively, for C-MRCA and HR-MRCA. High-resolution magnetic resonance coronary angiography was also reconstructed with the DLR technique (DLR-HR-MRCA). We compared the contrast-to-noise ratio (CNR) and visual evaluation scores for vessel sharpness and traceability of proximal and distal coronary vessels on a 4-point scale among 3 image series.
The vascular CNR value on the C-MRCA and the DLR-HR-MRCA was significantly higher than that on the HR-MRCA in the proximal and distal coronary arteries (13.9 ± 6.4, 11.3 ± 4.4, and 7.8 ± 2.6 for C-MRCA, DLR-HR-MRCA, and HR-MRCA, < .05, respectively). Mean visual evaluation scores for the vessel sharpness and traceability of proximal and distal coronary vessels were significantly higher on the HR-DLR-MRCA than the C-MRCA ( < .05, respectively).
Deep learning reconstruction significantly improved the CNR of coronary arteries on HR-MRCA, resulting in both higher visual image quality and better vessel traceability compared with C-MRCA.
评估深度学习重建(DLR)对非对比磁共振冠状动脉成像(MRCA)质量的定性和定量图像的影响。
10 名健康志愿者分别接受了常规 MRCA(C-MRCA)和高分辨率(HR)MRCA 检查,采用 3T 磁共振成像,体素大小分别为 1.8×1.1×1.7mm 和 1.8×0.6×1.0mm,用于 C-MRCA 和 HR-MRCA。HR-MRCA 还采用 DLR 技术(DLR-HR-MRCA)进行重建。我们比较了 3 种图像序列中近端和远端冠状动脉的血管对比噪声比(CNR)和血管锐利度和可追踪性的视觉评估评分。
在近端和远端冠状动脉中,C-MRCA 和 DLR-HR-MRCA 的血管 CNR 值均明显高于 HR-MRCA(13.9±6.4、11.3±4.4 和 7.8±2.6 分别为 C-MRCA、DLR-HR-MRCA 和 HR-MRCA,<0.05)。近端和远端冠状动脉的血管锐利度和可追踪性的平均视觉评估评分在 HR-DLR-MRCA 上明显高于 C-MRCA(<0.05)。
与 C-MRCA 相比,深度学习重建显著提高了 HR-MRCA 冠状动脉的 CNR,从而提高了图像质量和血管可追踪性。