Suppr超能文献

基于深度学习的人类枪伤分类

Deep learning-based human gunshot wounds classification.

作者信息

Queiroz Nogueira Lira Renato, Geovana Motta de Sousa Luana, Memoria Pinho Maisa Luana, Pinto da Silva Andrade de Lima Renan Cesar, Garcia Freitas Pedro, Scholles Soares Dias Bruno, Breda de Souza Andreia Cristina, Ferreira Leite André

机构信息

Department of Dentistry, University of Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, 70910-900, Distrito Federal, Brazil.

Department of Computer Science, University of Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, 70910-900, Distrito Federal, Brazil.

出版信息

Int J Legal Med. 2025 Mar;139(2):651-666. doi: 10.1007/s00414-024-03355-4. Epub 2024 Nov 6.

Abstract

In this paper, we present a forensic perspective on classifying gunshot wound patterns using Deep Learning (DL). Although DL has revolutionized various medical specialties, such as automating tasks like medical image classification, its applications in forensic contexts have been limited despite the inherently visual nature of the field. This study investigates the application of DL techniques (59 architectures) to classify gunshot wounds in a forensic context, focusing on distinguishing between entry and exit wounds and determining the Medical-Legal Shooting Distance (MLSD), which classifies wounds as contact, close range, or distant, based on digital images from real crime scene cases. A comprehensive database was constructed with 2,551 images, including 1,883 entries and 668 exit wounds. The ResNet152 architecture demonstrated superior performance in both entry and exit wound classification and MLSD categorization. For the first task, achieved accuracy of 86.90% and an AUC of 82.09%. For MLSD, the ResNet152 showed an accuracy of 92.48% and AUC up to 94.36%, though sample imbalance affected the metrics. Our findings underscore the challenges of standardizing wound images due to varying capture conditions but reflect the practical realities of forensic work. This research highlights the significant potential of DL in enhancing forensic pathology practices, advocating for Artificial Intelligence (AI) as a supportive tool to complement human expertise in forensic investigations.

摘要

在本文中,我们从法医角度介绍了使用深度学习(DL)对枪伤模式进行分类的方法。尽管深度学习已经给各个医学专业带来了变革,比如实现了医学图像分类等任务的自动化,但其在法医领域的应用仍然有限,尽管该领域本质上具有视觉特性。本研究调查了DL技术(59种架构)在法医背景下对枪伤进行分类的应用,重点在于区分入口伤和出口伤,并确定法医-法律射击距离(MLSD),即根据真实犯罪现场案例的数字图像,将伤口分类为接触伤、近距离伤或远距离伤。我们构建了一个包含2551张图像的综合数据库,其中包括1883个入口伤和668个出口伤。ResNet152架构在入口伤和出口伤分类以及MLSD分类方面均表现出卓越性能。对于第一项任务,准确率达到86.90%,曲线下面积(AUC)为82.09%。对于MLSD,ResNet152的准确率为92.48%,AUC高达94.36%,不过样本不平衡影响了这些指标。我们的研究结果强调了由于拍摄条件不同而导致伤口图像标准化面临的挑战,但也反映了法医工作的实际情况。这项研究突出了深度学习在加强法医病理学实践方面的巨大潜力,倡导将人工智能(AI)作为一种辅助工具,以补充法医调查中的人类专业知识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验