Department of Electrical and Computer Engineering, Clarkson University, 8 Clarkson Ave., Potsdam 13699, New York, USA.
Clarkson Center for Complex Systems Science, Clarkson University, 8 Clarkson Ave., Potsdam 13699, New York, USA.
Chaos. 2024 Nov 1;34(11). doi: 10.1063/5.0209865.
Experiments in the human brain reveal switching between different activity patterns and functional network organization over time. Recently, multilayer modeling has been employed across multiple neurobiological levels (from spiking networks to brain regions) to unveil novel insights into the emergence and time evolution of synchrony patterns. We consider two layers with the top layer directly coupled to the bottom layer. When isolated, the bottom layer would remain in a specific stable pattern. However, in the presence of the top layer, the network exhibits spatiotemporal switching. The top layer in combination with the inter-layer coupling acts as a symmetry breaker, governing the bottom layer and restricting the number of allowed symmetry-induced patterns. This structure allows us to demonstrate the existence and stability of pattern states on the bottom layer, but most remarkably, it enables a simple mechanism for switching between patterns based on the unique symmetry-breaking role of the governing layer. We demonstrate that the symmetry breaker prevents complete synchronization in the bottom layer, a situation that would not be desirable in a normal functioning brain. We illustrate our findings using two layers of Hindmarsh-Rose (HR) oscillators, employing the Master Stability function approach in small networks to investigate the switching between patterns.
人脑实验揭示了不同活动模式和功能网络组织随时间的切换。最近,多层建模已经应用于多个神经生物学水平(从尖峰网络到脑区),以揭示同步模式出现和时间演变的新见解。我们考虑两个具有顶层直接耦合到底层的层。当孤立时,底层将保持特定的稳定模式。然而,在顶层存在的情况下,网络表现出时空切换。顶层与层间耦合相结合充当对称破坏者,控制底层并限制允许的对称诱导模式的数量。这种结构允许我们证明底层模式状态的存在和稳定性,但最显著的是,它为基于控制层的独特对称破坏作用在模式之间进行简单的切换提供了一种机制。我们证明了对称破坏者阻止了底层的完全同步,这种情况在正常运作的大脑中是不理想的。我们使用两层 Hindmarsh-Rose (HR) 振荡器来展示我们的发现,采用主稳定性函数方法在小网络中研究模式之间的切换。