McIntyre Clayton C, Bahrami Mohsen, Shappell Heather M, Lyday Robert G, Fish Jeremie, Bollt Erik M, Laurienti Paul J
Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, USA.
Neuroscience Graduate Program, Wake Forest Graduate School of Arts and Sciences, Winston-Salem, NC, USA.
Netw Neurosci. 2024 Dec 10;8(4):1491-1506. doi: 10.1162/netn_a_00413. eCollection 2024.
We generated asynchronous functional networks (aFNs) using a novel method called optimal causation entropy and compared aFN topology with the correlation-based synchronous functional networks (sFNs), which are commonly used in network neuroscience studies. Functional magnetic resonance imaging (fMRI) time series from 212 participants of the National Consortium on Alcohol and Neurodevelopment in Adolescence study were used to generate aFNs and sFNs. As a demonstration of how aFNs and sFNs can be used in tandem, we used multivariate mixed effects models to determine whether age interacted with node efficiency to influence connection probabilities in the two networks. After adjusting for differences in network density, aFNs had higher global efficiency but lower local efficiency than the sFNs. In the aFNs, nodes with the highest outgoing global efficiency tended to be in the brainstem and orbitofrontal cortex. aFN nodes with the highest incoming global efficiency tended to be members of the default mode network in sFNs. Age interacted with node global efficiency in aFNs and node local efficiency in sFNs to influence connection probability. We conclude that the sFN and aFN both offer information about functional brain connectivity that the other type of network does not.
我们使用一种名为最优因果熵的新方法生成了异步功能网络(aFNs),并将aFN的拓扑结构与基于相关性的同步功能网络(sFNs)进行了比较,后者常用于网络神经科学研究。来自青少年酒精与神经发育国家联盟研究的212名参与者的功能磁共振成像(fMRI)时间序列被用于生成aFNs和sFNs。作为aFNs和sFNs如何串联使用的一个示例,我们使用多元混合效应模型来确定年龄是否与节点效率相互作用,以影响两个网络中的连接概率。在调整网络密度差异后,aFNs的全局效率高于sFNs,但局部效率低于sFNs。在aFNs中,具有最高输出全局效率的节点往往位于脑干和眶额皮质。具有最高输入全局效率的aFN节点往往是sFNs中默认模式网络的成员。年龄与aFNs中的节点全局效率以及sFNs中的节点局部效率相互作用,以影响连接概率。我们得出结论,sFN和aFN都提供了关于功能性脑连接的信息,而另一种类型的网络则没有。