Yang Shiyi, Zhou Tongliang, Yu Xiang, Nolan Steven P, Szostak Michal
Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States.
Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium.
Acc Chem Res. 2024 Nov 19;57(22):3343-3355. doi: 10.1021/acs.accounts.4c00549. Epub 2024 Nov 6.
ConspectusPalladium-catalyzed cross-coupling reactions owing to their high specificity and superb chemoselectivity represent a powerful tool for the rapid construction of C-C and C-X bonds across various areas of chemical research, including pharmaceutical development, polymer and agrochemical industries, bioactive natural products, and advanced functional materials, rendering them indispensable for modern synthetic chemists. The major driving force for the advances in this critical field is the design of increasingly more reactive and more selective ligands and precatalysts that aim not only to address challenging cross-coupling processes but also to achieve optimal reactivity, selectivity, and functional group compatibility under mild, user-friendly, operationally simple, and broadly applicable conditions. In this context, Pd(II)-N-heterocyclic carbene complexes (NHC = N-heterocyclic carbene) have garnered prevalent attention among practitioners of organic synthesis due to their unique electronic and steric characteristics that are unmatched among other ligands. In particular, the superior σ-donating ability of NHC ligands in conjunction with conformational flexibility as well as the ease of steric and electronic modification and high stability to air and moisture enable highly effective fundamental elementary steps in catalytic cycles and facile formation of well-defined complexes.The key factor in the design of well-defined, air- and moisture-stable Pd(II) precatalysts involves the incorporation of supporting ligands, which are essential for ensuring the stability of Pd(II)-NHC complexes and facile activation of Pd(II)-NHC precatalysts to catalytically active monoligated Pd(0)-NHC species under the reaction conditions. Notably, [Pd(NHC)(μ-Cl)Cl] chloro dimers, which can be readily synthesized via a one-pot, atom-economic process, are the most reactive Pd(II)-NHC complexes synthesized to date. These well-defined, air- and moisture-stable dimers readily dissociate to monomers and are activated to Pd(0)-NHC catalysts under both mild and strong base conditions, showcasing enhanced reactivity and selectivity among their Pd(II)-NHC counterparts. This balance between high, operationally simple stability, which is characteristic of Pd(II) complexes together with the ease of activation to the strongly nucleophilic Pd(0)-NHC catalysts, renders [Pd(NHC)(μ-Cl)Cl] the most reactive Pd(II)-NHC precatalysts developed to date for a broad range of general cross-coupling processes, including C-X, C-O, C-N, and C-S activation and enabling the direct late-stage functionalization of complex compounds decorated with a wide range of sensitive functional groups.In this Account, we outline [Pd(NHC)(μ-Cl)Cl] as a highly reactive Pd(II)-NHC precatalyst that should be routinely used as the first choice Pd complexes for a wide range of challenging cross-coupling reactions. The advancements in this field over the past 20 years emphasize the critical role of catalyst design to achieve optimal reactivity. Consequently, [Pd(NHC)(μ-Cl)Cl] chloro dimers should be recommended as the go-to complexes in the powerful toolbox of Pd-catalyzed cross-coupling reactions. These now commercially available Pd(II)-NHC complexes see widespread use across the synthetic chemistry community and enable the accelerated application of challenging cross-couplings in the synthesis of new molecules.
概述
钯催化的交叉偶联反应因其高特异性和卓越的化学选择性,成为化学研究各个领域中快速构建碳 - 碳和碳 - 杂原子键的有力工具,这些领域包括药物开发、聚合物和农用化学品行业、生物活性天然产物以及先进功能材料,使其成为现代合成化学家不可或缺的手段。这一关键领域取得进展的主要驱动力是设计出反应活性和选择性越来越高的配体和预催化剂,其目的不仅是应对具有挑战性的交叉偶联过程,还要在温和、用户友好、操作简单且广泛适用的条件下实现最佳的反应活性、选择性和官能团兼容性。在这种背景下,钯(II)- N - 杂环卡宾配合物(NHC = N - 杂环卡宾)因其独特的电子和空间特性(在其他配体中无与伦比)而在有机合成从业者中受到广泛关注。特别是,NHC配体卓越的σ供电子能力、构象灵活性以及空间和电子修饰的简便性以及对空气和水分的高稳定性,使得催化循环中的基本步骤高效进行,并易于形成结构明确的配合物。
设计结构明确、对空气和水分稳定的钯(II)预催化剂的关键因素涉及引入支撑配体,这对于确保钯(II)- NHC配合物的稳定性以及在反应条件下将钯(II)- NHC预催化剂轻松活化成具有催化活性的单配位钯(0)- NHC物种至关重要。值得注意的是,[Pd(NHC)(μ - Cl)Cl]氯二聚体可以通过一锅法原子经济过程轻松合成,是迄今为止合成的反应活性最高的钯(II)- NHC配合物。这些结构明确、对空气和水分稳定的二聚体很容易解离成单体,并在温和和强碱条件下被活化成钯(0)- NHC催化剂,在其钯(II)- NHC同类物中展现出更高的反应活性和选择性。钯(II)配合物所具有的高稳定性(操作简单)与易于活化成强亲核性的钯(0)- NHC催化剂之间的这种平衡,使得[Pd(NHC)(μ - Cl)Cl]成为迄今为止开发的用于广泛的一般交叉偶联过程(包括碳 - 杂原子、碳 - 氧、碳 - 氮和碳 - 硫活化)的反应活性最高的钯(II)- NHC预催化剂,并能够对带有各种敏感官能团的复杂化合物进行直接后期官能团化。
在本综述中,我们概述了[Pd(NHC)(μ - Cl)Cl]作为一种高反应活性的钯(II)- NHC预催化剂,它应该被常规用作各种具有挑战性的交叉偶联反应的首选钯配合物。过去20年该领域的进展强调了催化剂设计对于实现最佳反应活性的关键作用。因此,[Pd(NHC)(μ - Cl)Cl]氯二聚体应该被推荐为钯催化交叉偶联反应强大工具库中的首选配合物。这些现已商业化的钯(II)- NHC配合物在合成化学界得到广泛应用,并能够加速具有挑战性的交叉偶联反应在新分子合成中的应用。