Suppr超能文献

妊娠期高血压疾病患者孕产妇心血管发病事件预测模型的开发与验证

Development and Validation of a Predictive Model for Maternal Cardiovascular Morbidity Events in Patients With Hypertensive Disorders of Pregnancy.

作者信息

Meng Marie-Louise, Li Yuqi, Fuller Matthew, Lanners Quinn, Habib Ashraf S, Federspiel Jerome J, Quist-Nelson Johanna, Shah Svati H, Pencina Michael, Boggess Kim, Krishnamoorthy Vijay, Engelhard Matthew

机构信息

From the Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina.

Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina.

出版信息

Anesth Analg. 2024 Nov 6. doi: 10.1213/ANE.0000000000007278.

Abstract

BACKGROUND

Hypertensive disorders of pregnancy (HDP) are a major contributor to maternal morbidity, mortality, and accelerated cardiovascular (CV) disease. Comorbid conditions are likely important predictors of CV risk in pregnant people. Currently, there is no way to predict which people with HDP are at risk of acute CV complications. We developed and validated a predictive model for all CV events and for heart failure, renal failure, and cerebrovascular events specifically after HDP.

METHODS

Models were created using the Premier Healthcare Database. The inclusion criteria for the model dataset were delivery with an HDP with discharge from October 1, 2015 to December 31, 2020. Machine learning methods were used to derive predictive models of CV events occurring during delivery hospitalization (Index Model) or during readmission (Readmission Model) using a training set (60%) to estimate model parameters, a validation set (20%) to tune model hyperparameters and select a final model, and a test set (20%) to evaluate final model performance.

RESULTS

The total model cohort consisted of 553,658 deliveries with an HDP. A CV event occurred in 6501 (1.2%) of the delivery hospitalizations. Multilabel neural networks were selected for the Index Model and Readmission Model due to favorable performance compared to alternatives. This approach is designed for prediction of multiple events that share risk factors and may cooccur. The Index Model predicted all CV events with area under the receiver operating curve (AUROC) 0.878 and average precision (AP) 0.239 (cerebrovascular events: AUROC 0.941, heart failure: AUROC 0.898, and renal failure: AUROC 0.885). With a positivity threshold set to achieve ≥90% sensitivity, model specificity was 65.0%, 83.5%, 68.6%, and 65.6% for predicting all CV events, cerebrovascular events, heart failure, and renal failure, respectively. CV events within 1 year of delivery occurred in 3018 (0.6%) individuals. The Readmission Model predicted all CV events with AUROC 0.717 and AP 0.022 (renal failure: AUROC 0.748, heart failure: AUROC 0.734, and cerebrovascular events AUROC 0.698). Feature importance analysis indicated that the presence of chronic renal disease, cardiac disease, pulmonary hypertension, and preeclampsia with severe features had the greatest effect on the prediction of CV events.

CONCLUSIONS

Among individuals with HDP, our multilabel neural network model predicted CV events at delivery admission with good classification and events within 1 year of delivery with fair classification.

摘要

背景

妊娠期高血压疾病(HDP)是孕产妇发病、死亡及心血管(CV)疾病加速进展的主要原因。合并症可能是孕妇CV风险的重要预测因素。目前,尚无方法预测哪些HDP患者有急性CV并发症风险。我们开发并验证了一个针对所有CV事件以及特定于HDP后发生的心力衰竭、肾衰竭和脑血管事件的预测模型。

方法

使用Premier医疗数据库创建模型。模型数据集的纳入标准为2015年10月1日至2020年12月31日期间因HDP分娩并出院的患者。使用机器学习方法,通过训练集(60%)来估计模型参数,验证集(20%)来调整模型超参数并选择最终模型,测试集(20%)来评估最终模型性能,从而得出分娩住院期间(索引模型)或再次入院期间(再入院模型)发生CV事件的预测模型。

结果

模型总队列包括553,658例因HDP分娩的患者。6501例(1.2%)分娩住院患者发生了CV事件。由于与其他方法相比性能良好,因此为索引模型和再入院模型选择了多标签神经网络。这种方法旨在预测具有共同风险因素且可能同时发生的多个事件。索引模型预测所有CV事件的受试者工作特征曲线下面积(AUROC)为0.878,平均精度(AP)为0.239(脑血管事件:AUROC 0.941,心力衰竭:AUROC 0.898,肾衰竭:AUROC 0.885)。将阳性阈值设定为达到≥90%的灵敏度时,预测所有CV事件、脑血管事件、心力衰竭和肾衰竭的模型特异性分别为65.0%、83.5%、68.6%和65.6%。3018例(0.6%)个体在分娩后1年内发生了CV事件。再入院模型预测所有CV事件的AUROC为0.717,AP为0.022(肾衰竭:AUROC 0.748,心力衰竭:AUROC 0.734,脑血管事件AUROC 0.698)。特征重要性分析表明,慢性肾病、心脏病、肺动脉高压以及伴有严重特征的先兆子痫的存在对CV事件的预测影响最大。

结论

在HDP患者中,我们的多标签神经网络模型对分娩入院时的CV事件具有良好的分类预测能力,对分娩后1年内的事件具有中等的分类预测能力。

相似文献

9
Direct-acting antivirals for chronic hepatitis C.用于慢性丙型肝炎的直接作用抗病毒药物。
Cochrane Database Syst Rev. 2017 Sep 18;9(9):CD012143. doi: 10.1002/14651858.CD012143.pub3.
10

本文引用的文献

4
Preeclampsia.子痫前期
N Engl J Med. 2022 May 12;386(19):1817-1832. doi: 10.1056/NEJMra2109523.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验