文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Oxygen consumption measurements at ultra-high dose rate over a wide LET range.

作者信息

Karle Celine, Liew Hans, Tessonnier Thomas, Mein Stewart, Petersson Kristoffer, Schömers Christian, Scheloske Stefan, Brons Stephan, Cee Rainer, Major Gerald, Haberer Thomas, Abdollahi Amir, Debus Jürgen, Dokic Ivana, Mairani Andrea

机构信息

Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany.

Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.

出版信息

Med Phys. 2025 Feb;52(2):1323-1334. doi: 10.1002/mp.17496. Epub 2024 Nov 6.


DOI:10.1002/mp.17496
PMID:39504410
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11788059/
Abstract

BACKGROUND: The role of radiolytic oxygen consumption for the in-vitro "Ultra-High Dose Rate" (UHDR) sparing and in-vivo FLASH effect is subject to active debate, but data on key dependencies such as the radiation quality are lacking. PURPOSE: The influence of "dose-averaged Linear Energy Transfer" (LETd) and dose rate on radiolytic oxygen consumption was investigated by monitoring the oxygen concentration during irradiation with electrons, protons, helium, carbon, and oxygen ions at UHDR and "Standard Dose Rates" (SDR). METHODS: Sealed "Bovine Serum Albumin" (BSA) 5% samples were exposed to 15 Gy of electrons and protons, and for the first time helium, carbon, and oxygen ions with LETd values of 1, 5.4, 14.4, 65, and 100.3 keV/µm, respectively, delivered at mean dose rates of either 0.3-0.4 Gy/s for SDR or approximately 100 Gy/s for UHDR. The Oxylite (Oxford Optronics) system allowed measurements of the oxygen concentration before and after irradiation to calculate the oxygen consumption rate. RESULTS: The oxygen consumption rate was found to decrease with increasing LETd from 0.351 mmHg/Gy for low LET electrons to 0.1796 mmHg/Gy for high LET oxygen ions at SDR and for UHDR from 0.317 to 0.1556 mmHg/Gy, respectively. A higher consumption rate for SDR irradiation compared to the corresponding UHDR irradiation persisted for all particle types. CONCLUSION: The measured consumption rates demonstrate a distinct LETd dependence. The obtained dataset, encompassing a wide range of LETd values, could serve as a benchmark for Monte Carlo simulations, which may aid in enhancing our comprehension of oxygen-related mechanisms after irradiations. Ultimately, they could help assess the viability of different hypotheses regarding UHDR sparing mechanisms and the FLASH effect. The found LETd dependence underscores the potential of heavy ion therapy, wherein elevated consumption rates in adjacent normal tissue offer protective benefits, while leaving tumor regions with generally higher "Linear Energy Transfer" (LET) vulnerable.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b74f/11788262/660f81fb404c/MP-52-1323-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b74f/11788262/486ab98b1a9d/MP-52-1323-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b74f/11788262/25ff9bcbdf91/MP-52-1323-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b74f/11788262/6bed9f20a806/MP-52-1323-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b74f/11788262/ca625fc66a6b/MP-52-1323-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b74f/11788262/5dc6ca339901/MP-52-1323-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b74f/11788262/660f81fb404c/MP-52-1323-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b74f/11788262/486ab98b1a9d/MP-52-1323-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b74f/11788262/25ff9bcbdf91/MP-52-1323-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b74f/11788262/6bed9f20a806/MP-52-1323-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b74f/11788262/ca625fc66a6b/MP-52-1323-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b74f/11788262/5dc6ca339901/MP-52-1323-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b74f/11788262/660f81fb404c/MP-52-1323-g002.jpg

相似文献

[1]
Oxygen consumption measurements at ultra-high dose rate over a wide LET range.

Med Phys. 2025-2

[2]
FLASH Dose Rate Helium Ion Beams: First In Vitro Investigations.

Int J Radiat Oncol Biol Phys. 2021-11-15

[3]
Neuroprotective Effects of Ultra-High Dose Rate FLASH Bragg Peak Proton Irradiation.

Int J Radiat Oncol Biol Phys. 2022-7-1

[4]
The Appropriate Conditions for the Cell Sparing (FLASH) Effect Exist in Ultra-high Dose Rate Carbon Ion Irradiation.

Anticancer Res. 2025-3

[5]
A Computer Modeling Study of Water Radiolysis at High Dose Rates. Relevance to FLASH Radiotherapy.

Radiat Res. 2021-2-1

[6]
Oxygen Consumption In Vivo by Ultra-High Dose Rate Electron Irradiation Depends Upon Baseline Tissue Oxygenation.

Int J Radiat Oncol Biol Phys. 2025-3-15

[7]
Analysis of hydrogen peroxide production in pure water: Ultrahigh versus conventional dose-rate irradiation and mechanistic insights.

Med Phys. 2024-10

[8]
Dose averaged linear energy transfer optimization for large sacral chordomas in carbon ion therapy.

Med Phys. 2024-6

[9]
Characterizing devices for validation of dose, dose rate, and LET in ultra high dose rate proton irradiations.

Med Phys. 2024-11

[10]
Impact of porous lung substitute on linear energy transfer (LET) assessed via Monte Carlo simulation and CR-39 measurement with a carbon-ion beam.

Med Phys. 2025-4

引用本文的文献

[1]
First in vitro and in vivo experiments with ultra high-dose rate oxygen ion radiotherapy.

Phys Imaging Radiat Oncol. 2025-7-3

本文引用的文献

[1]
FLASH Bragg-Peak Irradiation With a Therapeutic Carbon Ion Beam: First In Vivo Results.

Int J Radiat Oncol Biol Phys. 2025-4-1

[2]
Dose Rate Effects from the 1950s through to the Era of FLASH.

Radiat Res. 2024-8-1

[3]
How quickly does FLASH need to be delivered? A theoretical study of radiolytic oxygen depletion kinetics in tissues.

Phys Med Biol. 2024-5-17

[4]
Dosimetric and biologic intercomparison between electron and proton FLASH beams.

Radiother Oncol. 2024-1

[5]
The LET trilemma: Conflicts between robust target coverage, uniform dose, and dose-averaged LET in carbon therapy.

Med Phys. 2023-12

[6]
Direct Measurements of FLASH-Induced Changes in Intracellular Oxygenation.

Int J Radiat Oncol Biol Phys. 2024-3-1

[7]
Mean dose rate in ultra-high dose rate electron irradiation is a significant predictor for Oconsumption and HOyield.

Phys Med Biol. 2023-8-7

[8]
The general-purpose Geant4 Monte Carlo toolkit and its Geant4-DNA extension to investigate mechanisms underlying the FLASH effect in radiotherapy: Current status and challenges.

Phys Med. 2023-6

[9]
Mechanisms of the 'FLASH' effect: Radiation chemistry should not be ignored in developing models.

Radiother Oncol. 2023-7

[10]
Radiation-Chemical Oxygen Depletion Depends on Chemical Environment and Dose Rate: Implications for the FLASH Effect.

Int J Radiat Oncol Biol Phys. 2023-9-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索