Suppr超能文献

scDTL:通过利用批量细胞信息进行深度迁移学习增强单细胞 RNA-seq 推断。

scDTL: enhancing single-cell RNA-seq imputation through deep transfer learning with bulk cell information.

机构信息

College of Computer Science and Software Engineering, Shenzhen University, Guangdong 518057, China.

College of Future Technology, HKUST(GZ), Guangdong 510641, China.

出版信息

Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae555.

Abstract

The increasing single-cell RNA sequencing (scRNA-seq) data enable researchers to explore cellular heterogeneity and gene expression profiles, offering a high-resolution view of the transcriptome at the single-cell level. However, the dropout events, which are often present in scRNA-seq data, remaining challenges for downstream analysis. Although a number of studies have been developed to recover single-cell expression profiles, their performance may be hindered due to not fully exploring the inherent relations between genes. To address the issue, we propose scDTL, a deep transfer learning based approach for scRNA-seq data imputation by harnessing the bulk RNA-sequencing information. We firstly employ a denoising autoencoder trained on bulk RNA-seq data as the initial imputation model, and then leverage a domain adaptation framework that transfers the knowledge learned by the bulk imputation model to scRNA-seq learning task. In addition, scDTL employs a parallel operation with a 1D U-Net denoising model to provide gene representations of varying granularity, capturing both coarse and fine features of the scRNA-seq data. Finally, we utilize a cross-channel attention mechanism to fuse the features learned from the transferred bulk imputation model and U-Net model. In the evaluation, we conduct extensive experiments to demonstrate that scDTL could outperform other state-of-the-art methods in the quantitative comparison and downstream analyses.

摘要

单细胞 RNA 测序 (scRNA-seq) 数据的不断增加,使研究人员能够探索细胞异质性和基因表达谱,提供单细胞水平转录组的高分辨率视图。然而,在 scRNA-seq 数据中经常存在的缺失事件仍然是下游分析的挑战。尽管已经有许多研究致力于恢复单细胞表达谱,但由于未能充分挖掘基因之间的内在关系,其性能可能会受到阻碍。为了解决这个问题,我们提出了 scDTL,这是一种基于深度迁移学习的方法,通过利用批量 RNA-seq 信息来进行 scRNA-seq 数据插补。我们首先使用在批量 RNA-seq 数据上训练的去噪自动编码器作为初始插补模型,然后利用域自适应框架将批量插补模型学习到的知识转移到 scRNA-seq 学习任务中。此外,scDTL 采用并行操作,使用 1D U-Net 去噪模型提供不同粒度的基因表示,同时捕获 scRNA-seq 数据的粗粒度和细粒度特征。最后,我们利用交叉通道注意力机制融合从转移的批量插补模型和 U-Net 模型中学习到的特征。在评估中,我们进行了广泛的实验,以证明 scDTL 在定量比较和下游分析中可以优于其他最先进的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f383/11540133/f77593774584/bbae555f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验