Suppr超能文献

迈向法医学中基于机器学习的血迹分类框架的第一步。

A first step towards a machine learning-based framework for bloodstain classification in forensic science.

作者信息

Jung Hyeonah, Jo Yeon-Soo, Ahn Yoseop, Jeong Jaehoon, Lim Si-Keun

机构信息

Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-Do 16419, Republic of Korea.

Department of Forensic Sciences, Sungkyunkwan University, Suwon, Gyeonggi-Do 16419, Republic of Korea.

出版信息

Forensic Sci Int. 2024 Dec;365:112278. doi: 10.1016/j.forsciint.2024.112278. Epub 2024 Oct 31.

Abstract

Bloodstains found at a crime scene can help estimate the events that occurred during the crime. Reconstructing the crime scene by analyzing the bloodstain pattern contributes to understanding the bloody event. Therefore, it is essential to classify bloodstains through bloodstain pattern analysis (BPA) and accurately estimate the actions that took place at that time. In this study, we investigate the potential of using machine learning and deep learning to determine an action related to bloodstain data through the accessment of the corresponding bloodstain type by creating a prototype classification model. There are 14 types of bloodstain according to the classification system based on appearance. In this study, we test the classification potential of each bloodstain data for three bloodstain patterns such as Swing, Cessation, and Impact. Through experiments, it is shown that our prototype classification model for the selected bloodstains is developed and the accuracy of the resulting model is evaluated to be 80 %.

摘要

在犯罪现场发现的血迹有助于推断犯罪过程中发生的事件。通过分析血迹形态重建犯罪现场有助于了解流血事件。因此,通过血迹形态分析(BPA)对血迹进行分类并准确估计当时发生的行为至关重要。在本研究中,我们通过创建一个原型分类模型,通过评估相应的血迹类型,研究使用机器学习和深度学习来确定与血迹数据相关行为的潜力。根据基于外观的分类系统,有14种血迹类型。在本研究中,我们测试了每种血迹数据对三种血迹形态(如摆动、停止和撞击)的分类潜力。通过实验表明,我们针对所选血迹的原型分类模型已开发出来,所得模型的准确率评估为80%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验