Muthukumaran T, Philip John
Smart Materials Section, MCG, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu, India.
Smart Materials Section, MCG, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu, India; Department of Physics, Cochin University of Science and Technology, Kochi -22, India.
Adv Colloid Interface Sci. 2024 Dec;334:103314. doi: 10.1016/j.cis.2024.103314. Epub 2024 Oct 23.
Magnetic nanoparticles (MNPs) have garnered significant attention from researchers due to their numerous technologically significant applications in diverse fields, including biomedicine, diagnostics, agriculture, optics, mechanics, electronics, sensing technology, catalysis, and environmental remediation. The superparamagnetic nature of MNP is exploited for many applications and remains fascinating to study many fundamental phenomena. The uniqueness of this review is that it gives an in-depth review of different synthesis approaches adopted for preparing magnetic nanoparticles and nanoparticle formation mechanisms, functionalizing them with different capping agents, and applying different functionalized magnetic nanoparticles. The important synthesis techniques covered include coprecipitation, microwave-assisted, sonochemical, sol-gel, microemulsion, hydrothermal/solvothermal, thermal decomposition, and mechano-chemical synthesis. Further, the advantages and disadvantages of each technique are discussed, and tables show important results of prepared particles. Other aspects covered in this review are the dispersion of magnetic nanoparticles in the continuous matrix, the influence of surface capping on high-temperature thermal stability, the long-term stability of ferrofluids, and applications of functionalized magnetic nanoparticles. For effective utilization of the ferrite nanoparticles, it is essential to formulate thermally and colloidally stable magnetic nanoparticles with desired magnetic properties. Capping enhances the phase transition temperature and long-term colloidal stability. Magnetic nanoparticles capped or functionalized with specific binding species, specific components like drugs, or other functional groups make them suitable for applications in biotechnology/biomedicine. Recent studies reveal the tremendous scope of MNPs in therapeutics and theranostics. The requirements for nanoparticle size, morphology, and physio-chemical properties, especially magnetic properties, functionalization, and stability, vary with applications. There are also challenges for precise size control and the cost-effective production of nanoparticles in large quantities. The review should be an ideal material for researchers working on magnetic nanomaterials and an excellent reference for freshers.
磁性纳米粒子(MNPs)因其在生物医学、诊断、农业、光学、机械、电子、传感技术、催化和环境修复等不同领域的众多具有重要技术意义的应用而受到研究人员的广泛关注。MNP的超顺磁性被用于许多应用,并且研究许多基本现象仍然很有吸引力。本综述的独特之处在于,它深入回顾了制备磁性纳米粒子所采用的不同合成方法和纳米粒子形成机制,用不同的封端剂对其进行功能化,以及应用不同的功能化磁性纳米粒子。涵盖的重要合成技术包括共沉淀法、微波辅助法、声化学法、溶胶 - 凝胶法、微乳液法、水热/溶剂热法、热分解法和机械化学合成法。此外,还讨论了每种技术的优缺点,并通过表格展示了制备粒子的重要结果。本综述涵盖的其他方面包括磁性纳米粒子在连续基质中的分散、表面封端对高温热稳定性的影响、铁磁流体的长期稳定性以及功能化磁性纳米粒子的应用。为了有效利用铁氧体纳米粒子,制备具有所需磁性的热稳定和胶体稳定的磁性纳米粒子至关重要。封端可提高相变温度和长期胶体稳定性。用特定结合物种、药物等特定成分或其他官能团封端或功能化的磁性纳米粒子使其适用于生物技术/生物医学应用。最近的研究揭示了MNPs在治疗和诊疗领域的巨大潜力。纳米粒子的尺寸、形态和物理化学性质,特别是磁性、功能化和稳定性的要求因应用而异。精确控制尺寸和大量生产具有成本效益的纳米粒子也存在挑战。这篇综述对于从事磁性纳米材料研究的人员来说应该是理想的材料,对于新手来说也是极好的参考资料。