Université Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 17 Rue des Martyrs, 38000, Grenoble, France.
Université Côte D'Azur, Institut de Chimie de Nice UMR7272, CNRS, 28 Avenue Valrose, 06108, Nice, France.
Biosens Bioelectron. 2025 Jan 15;268:116879. doi: 10.1016/j.bios.2024.116879. Epub 2024 Oct 24.
Over the past two decades, the use of odorant-binding proteins (OBPs) for the development of biosensors and bioelectronic noses (bioeNs) aimed at detecting and analyzing volatile organic compounds (VOCs) has been the subject of considerable research. However, there is a lack of fundamental studies for better understanding the interaction between OBPs and VOCs in gas phase. In this work, we investigated the effect of two key factors, namely relative humidity (RH) level and immobilization technique, on the selectivity of two OBP-based biosensors in gas phase. Concerning the effect of RH, the results showed that our active OBP (wild-type rat OBP3) lost its selectivity at 0% RH but retained good selectivity at 30% and 50% RH. To better understand the effect of this parameter, the hydration mechanism of the OBP was studied both experimentally and through molecular dynamics simulations. The effect of a cysteine residue, genetically added to the N-terminus of OBPs to control their orientation after immobilization on the chip, was evaluated. A significant reduction in selectivity was observed in the absence of cysteine. As expected, the introduction of this amino acid enabled to control the orientation of OBPs, making their binding pocket more accessible to VOCs and favoring specific interactions. Furthermore, we demonstrated that combining OBP-based biosensors with different properties can improve the discrimination capability of our bioeN. Finally, the ability of our system to detect essential oil vapors was tested, providing preliminary evidence that our bioeN is capable of detecting VOCs in complex media.
在过去的二十年中,人们一直致力于研究利用气味结合蛋白(OBP)来开发用于检测和分析挥发性有机化合物(VOCs)的生物传感器和电子鼻(bioE N)。然而,对于更好地理解 OBPs 与气相中的 VOCs 之间的相互作用,仍缺乏基础性研究。在这项工作中,我们研究了两个关键因素,即相对湿度(RH)水平和固定化技术,对基于两种 OBP 的生物传感器在气相中的选择性的影响。关于 RH 的影响,结果表明,我们的活性 OBP(野生型大鼠 OBP3)在 0%RH 时失去了选择性,但在 30%和 50%RH 时仍保持良好的选择性。为了更好地理解这一参数的影响,我们通过实验和分子动力学模拟研究了 OBP 的水合机制。评估了在芯片上固定化时添加到 N 端的半胱氨酸残基对 OBPs 取向控制的影响。在没有半胱氨酸的情况下,选择性显著降低。正如预期的那样,引入这种氨基酸能够控制 OBPs 的取向,使它们的结合口袋更容易接触到 VOCs,并有利于特定的相互作用。此外,我们证明了将具有不同特性的基于 OBP 的生物传感器结合使用可以提高我们的 bioE N 的区分能力。最后,测试了我们的系统检测精油蒸气的能力,初步证明了我们的 bioE N 能够检测复杂介质中的 VOCs。