Suppr超能文献

生物电子鼻在气味传感中的应用及进展。

Applications and Advances in Bioelectronic Noses for Odour Sensing.

机构信息

Hazards Monitoring Bionano Research Center (HMBRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon 34141, Korea.

Department of Nanobiotechnology, Korea University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Korea.

出版信息

Sensors (Basel). 2018 Jan 1;18(1):103. doi: 10.3390/s18010103.

Abstract

A bioelectronic nose, an intelligent chemical sensor array system coupled with bio-receptors to identify gases and vapours, resembles mammalian olfaction by which many vertebrates can sniff out volatile organic compounds (VOCs) sensitively and specifically even at very low concentrations. Olfaction is undertaken by the olfactory system, which detects odorants that are inhaled through the nose where they come into contact with the olfactory epithelium containing olfactory receptors (ORs). Because of its ability to mimic biological olfaction, a bio-inspired electronic nose has been used to detect a variety of important compounds in complex environments. Recently, biosensor systems have been introduced that combine nanoelectronic technology and olfactory receptors themselves as a source of capturing elements for biosensing. In this article, we will present the latest advances in bioelectronic nose technology mimicking the olfactory system, including biological recognition elements, emerging detection systems, production and immobilization of sensing elements on sensor surface, and applications of bioelectronic noses. Furthermore, current research trends and future challenges in this field will be discussed.

摘要

仿生电子鼻模拟嗅觉系统,由与生物受体结合的智能化学传感器阵列系统组成,用于识别气体和蒸气,其功能类似于哺乳动物的嗅觉,许多脊椎动物即使在极低的浓度下也能敏感且特异性地嗅出挥发性有机化合物 (VOCs)。嗅觉由嗅觉系统完成,该系统检测通过鼻子吸入的气味剂,在那里它们与包含嗅觉受体 (OR) 的嗅觉上皮接触。由于仿生电子鼻能够模拟生物嗅觉,因此已被用于检测复杂环境中的各种重要化合物。最近,引入了一种生物传感器系统,它将纳米电子技术与嗅觉受体本身结合作为生物传感的捕获元素来源。在本文中,我们将介绍仿生电子鼻技术在模拟嗅觉系统方面的最新进展,包括生物识别元件、新兴检测系统、传感元件在传感器表面上的生产和固定化,以及仿生电子鼻的应用。此外,还将讨论该领域当前的研究趋势和未来的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b6e/5795383/d161f2bd148f/sensors-18-00103-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验