ART-TG, Inserm US35, Corbeil-Essonnes, France.
Maternity/Obstetrics Unit, Centre Hospitalier Sud-Francilien, Corbeil-Essonnes, France.
Hum Gene Ther. 2024 Nov;35(21-22):896-903. doi: 10.1089/hum.2024.098. Epub 2024 Nov 6.
Sickle cell disease (SCD) is a debilitating monogenic disease originating from mutations in the hemoglobin beta chain gene producing an abnormal hemoglobin HbS. The polymerization of HbS is responsible for the sickling of erythrocytes leading to anemia and vaso-occlusive events. Gene therapy is a promising treatment of SCD, and two different gene therapy drugs, using gene editing or gene transfer, have already reached the marketing stage. There is still a need to improve the efficacy of gene therapy in SCD, particularly when using anti-sickling beta-globin gene transfer strategies, which must outcompete the pathological HbS. One possibility is to increase transduction by inhibiting lentiviral restriction factors such as interferon-induced transmembrane proteins (IFITMs). This can be achieved by the addition of cyclosporin H (CsH) during the transduction process. This strategy was applied here in CD34 hematopoietic progenitor and stem cells obtained from cord blood (CB). A first series of experiments with lentiviral vector coding for a green fluorescent protein (GFP) gene confirmed that the addition of CsH enhanced transgene expression levels and vector copy number per cell (VCN), while CD34 cells remained viable and functional. Notably, the production of colony-forming cells (CFC) remained unaffected unless very high VCN values were reached. In a second step, CD34 cells obtained from the CB of newborns with homozygous ( = 2) or heterozygous ( = 1) SCD mutations were transduced with the GLOBE-AS3 lentiviral vector coding for the HbAS3 anti-sickling beta globin. As with GFP, GLOBE-AS3 lentiviral transduction was clearly enhanced by CsH, leading to VCN > 2 and therapeutic levels of expression of the HbAS3. Moreover, the process did not affect the viability or functions of CFC. The combination of CB progenitors, the GLOBE-AS3 vector, and CsH is thus shown here to be a promising approach for the treatment of SCD.
镰状细胞病(SCD)是一种衰弱性的单基因疾病,源自血红蛋白β链基因突变,导致异常血红蛋白 HbS 的产生。HbS 的聚合导致红细胞镰变,从而导致贫血和血管阻塞事件。基因治疗是 SCD 的一种有前途的治疗方法,两种不同的基因治疗药物,使用基因编辑或基因转移,已经进入市场阶段。仍然需要提高 SCD 基因治疗的疗效,特别是在使用抗镰变β珠蛋白基因转移策略时,该策略必须与病理性 HbS 竞争。一种可能性是通过抑制干扰素诱导的跨膜蛋白(IFITM)等慢病毒限制因子来增加转导。这可以通过在转导过程中添加环孢素 H(CsH)来实现。该策略在这里应用于从脐带血(CB)获得的 CD34 造血祖细胞和干细胞。用编码绿色荧光蛋白(GFP)基因的慢病毒载体进行的一系列初步实验证实,添加 CsH 可增强转基因表达水平和每个细胞的载体拷贝数(VCN),同时 CD34 细胞仍保持存活和功能。值得注意的是,除非达到非常高的 VCN 值,否则不会影响集落形成细胞(CFC)的产生。在第二步中,用编码 HbAS3 抗镰变β珠蛋白的 GLOBE-AS3 慢病毒载体转导来自纯合子(=2)或杂合子(=1)SCD 突变的新生儿 CB 中的 CD34 细胞。与 GFP 一样,CsH 明显增强了 GLOBE-AS3 慢病毒的转导,导致 VCN>2 和 HbAS3 的治疗水平表达。此外,该过程不影响 CFC 的活力或功能。因此,这里显示 CB 祖细胞、GLOBE-AS3 载体和 CsH 的组合是治疗 SCD 的一种很有前途的方法。