Suppr超能文献

[具体内容缺失]、[具体内容缺失]和[具体内容缺失]在确定肺腺癌患者预后中的作用。

Role of , , and in determining the prognosis of patients with lung adenocarcinoma.

作者信息

Xu Rongjian, Han Fengyi, Zhao Yandong, Liu Ao, An Ning, Wang Baogang, Zardo Patrick, Sanz-Santos José, Franssen Aimée J P M, de Loos Erik R, Zhao Min

机构信息

Department of Medical Microbiology, School of Basic Medicine, Qingdao University, Qingdao, China.

Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.

出版信息

Transl Lung Cancer Res. 2024 Oct 31;13(10):2729-2745. doi: 10.21037/tlcr-24-696. Epub 2024 Oct 28.

Abstract

BACKGROUND

Non-small cell lung cancer (NSCLC) accounts for about 85% of lung cancers, and is the leading cause of tumor-related death. Lung adenocarcinoma (LUAD) is the most prevalent subtype of NSCLC. Although significant progress of LUAD treatment has been made under multimodal strategies, the prognosis of advanced LUAD is still poor due to recurrence and metastasis. There is still a lack of reliable markers to evaluate the LUAD prognosis. This study aims to explore novel biomarkers and construct a prognostic model to predict the prognosis of LUAD patients.

METHODS

The Genomic Data Commons-The Cancer Genome Atlas-Lung Adenocarcinoma (GDC-TCGA-LUAD) dataset was downloaded from the University of California, Santa Cruz (UCSC) Xena browser. The GSE72094 and GSE13213 datasets and corresponding clinical information were downloaded from the Gene Expression Omnibus (GEO) database. By analyzing these datasets using DESeq2 R package and Limma R package, differentially expressed genes (DEGs) were found. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to analyze possible enrichment pathways. A protein-protein interaction (PPI) network was constructed to explore possible relationship among DEGs by using the STRING database. A survival analysis was performed to identify reliable prognostic genes using the Kaplan-Meier method. A multi-omics analysis was performed using the Gene Set Cancer Analysis (GSCA). The Tumor Immune Estimation Score (TIMER) database was used to analyze the association between prognostic genes and immune infiltration. A Spearman correlation analysis was conducted to examine the correlation between prognostic genes and drug sensitivity. A multivariate Cox regression was used to identify independent prognostic factors. Next, a nomogram was constructed using the rms R package. Finally, the expressions of aspartyl-tRNA synthetase 2 (DARS2) and phosphoribosyl aminoimidazole carboxylase (PAICS) were detected using immunohistochemistry (IHC).

RESULTS

We screened out 30 DEGs prior to functional enrichment and PPI network analysis revealing potential enrichment pathways and interactions of these DEGs. Then survival analysis revealed the , , and expression was negatively correlated with LUAD prognosis. Additionally, multi-omics analysis showed , , and expressions were significantly higher in LUAD tissues than normal tissues. , , and were all up-regulated in late stage and M1 stage. Correlation analysis indicated , , and may not be associated with activation or suppression of immune cells. Drug sensitivity analysis revealed many potentially effective drugs and small molecule compounds. Moreover, we successfully constructed a robust and stable nomogram by combining the and expression with other clinicopathological variables. Finally, IHC results showed DARS2 and PAICS were significantly up-regulated in LUAD.

CONCLUSIONS

The , , and expression was negatively correlated with LUAD prognosis. A prognostic model, which integrated , , and other clinicopathological variables, was able to effectively predict LUAD patients prognosis.

摘要

背景

非小细胞肺癌(NSCLC)约占肺癌的85%,是肿瘤相关死亡的主要原因。肺腺癌(LUAD)是NSCLC最常见的亚型。尽管在多模式治疗策略下LUAD治疗取得了显著进展,但晚期LUAD的预后仍因复发和转移而较差。目前仍缺乏可靠的评估LUAD预后的标志物。本研究旨在探索新的生物标志物并构建预后模型以预测LUAD患者的预后。

方法

从加利福尼亚大学圣克鲁兹分校(UCSC)Xena浏览器下载基因组数据共享库 - 癌症基因组图谱 - 肺腺癌(GDC - TCGA - LUAD)数据集。从基因表达综合数据库(GEO)下载GSE72094和GSE13213数据集及相应的临床信息。使用DESeq2 R包和Limma R包分析这些数据集,发现差异表达基因(DEG)。使用基因本体(GO)和京都基因与基因组百科全书(KEGG)分析来分析可能的富集途径。使用STRING数据库构建蛋白质 - 蛋白质相互作用(PPI)网络以探索DEG之间的可能关系。使用Kaplan - Meier方法进行生存分析以鉴定可靠的预后基因。使用基因集癌症分析(GSCA)进行多组学分析。使用肿瘤免疫估计评分(TIMER)数据库分析预后基因与免疫浸润之间的关联。进行Spearman相关性分析以检查预后基因与药物敏感性之间的相关性。使用多变量Cox回归鉴定独立的预后因素。接下来,使用rms R包构建列线图。最后,使用免疫组织化学(IHC)检测天冬氨酰 - tRNA合成酶2(DARS2)和磷酸核糖氨基咪唑羧化酶(PAICS)的表达。

结果

在功能富集和PPI网络分析之前,我们筛选出30个DEG,揭示了这些DEG的潜在富集途径和相互作用。然后生存分析显示, 、 和 的表达与LUAD预后呈负相关。此外,多组学分析显示, 、 和 在LUAD组织中的表达明显高于正常组织。 、 和 在晚期和M1期均上调。相关性分析表明, 、 和 可能与免疫细胞的激活或抑制无关。药物敏感性分析揭示了许多潜在有效的药物和小分子化合物。此外,我们通过将 和 的表达与其他临床病理变量相结合,成功构建了一个强大且稳定的列线图。最后,IHC结果显示DARS2和PAICS在LUAD中明显上调。

结论

、 和 的表达与LUAD预后呈负相关。一个整合了 、 和其他临床病理变量的预后模型能够有效预测LUAD患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7f6/11535832/f87a4a5bd0b4/tlcr-13-10-2729-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验