Oka Takuji, Okuno Ayana, Hira Daisuke, Teramoto Takamasa, Chihara Yuria, Hirata Rio, Kadooka Chihiro, Kakuta Yoshimitsu
Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
Laboratory of Biophysical Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
PNAS Nexus. 2024 Oct 25;3(11):pgae482. doi: 10.1093/pnasnexus/pgae482. eCollection 2024 Nov.
UDP-α-D-galactofuranose (UDP-Galf): β-galactofuranoside β-(1→5)-galactofuranosyltransferase, known as GfsA, is essential in synthesizing β-(1→5)-galactofuranosyl oligosaccharides that are incorporated into the cell wall of pathogenic fungi. This study analyzed the structure and function of GfsA from . To provide crucial insights into the catalytic mechanism and substrate recognition, the complex structure was elucidated with manganese (Mn), a donor substrate product (UDP), and an acceptor sugar molecule (β-galactofuranose). In addition to the typical GT-A fold domain, GfsA has a unique domain formed by the N and C termini. The former interacts with the GT-A of another GfsA, forming a dimer. The active center that contains Mn, UDP, and galactofuranose forms a groove structure that is highly conserved in the GfsA of Pezizomycotina fungi. Enzymatic assays using site-directed mutants were conducted to determine the roles of specific active-site residues in the enzymatic activity of GfsA. The predicted enzyme-substrate complex model containing UDP-Galf characterized a specific β-galactofuranosyltransfer mechanism to the 5'-OH of β-galactofuranose. Overall, the structure of GfsA in pathogenic fungi provides insights into the complex glycan biosynthetic processes of fungal pathogenesis and may inform the development of novel antifungal therapies.
UDP-α-D-呋喃半乳糖(UDP-Galf):β-呋喃半乳糖苷β-(1→5)-呋喃半乳糖基转移酶,即GfsA,在合成并入致病真菌细胞壁的β-(1→5)-呋喃半乳糖基寡糖过程中至关重要。本研究分析了来自[具体来源未给出]的GfsA的结构与功能。为深入了解催化机制和底物识别,解析了该复合物与锰(Mn)、供体底物产物(UDP)以及受体糖分子(β-呋喃半乳糖)的结构。除典型的GT-A折叠结构域外,GfsA还具有由N端和C端形成的独特结构域。前者与另一个GfsA的GT-A相互作用,形成二聚体。包含Mn、UDP和呋喃半乳糖的活性中心形成了一个在粪壳菌纲真菌的GfsA中高度保守的凹槽结构。利用定点突变体进行酶活性测定,以确定特定活性位点残基在GfsA酶活性中的作用。含有UDP-Galf的预测酶-底物复合物模型表征了一种针对β-呋喃半乳糖5'-OH的特定β-呋喃半乳糖基转移机制。总体而言,致病真菌中GfsA的结构为真菌致病过程中复杂的聚糖生物合成过程提供了见解,并可能为新型抗真菌疗法的开发提供依据。