Suppr超能文献

UDP-α-D-呋喃半乳糖:β-呋喃半乳糖苷β-(1→5)-呋喃半乳糖基转移酶GfsA的底物结合与催化机制

Substrate binding and catalytic mechanism of UDP-α-D-galactofuranose: β-galactofuranoside β-(1→5)-galactofuranosyltransferase GfsA.

作者信息

Oka Takuji, Okuno Ayana, Hira Daisuke, Teramoto Takamasa, Chihara Yuria, Hirata Rio, Kadooka Chihiro, Kakuta Yoshimitsu

机构信息

Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.

Laboratory of Biophysical Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

出版信息

PNAS Nexus. 2024 Oct 25;3(11):pgae482. doi: 10.1093/pnasnexus/pgae482. eCollection 2024 Nov.

Abstract

UDP-α-D-galactofuranose (UDP-Galf): β-galactofuranoside β-(1→5)-galactofuranosyltransferase, known as GfsA, is essential in synthesizing β-(1→5)-galactofuranosyl oligosaccharides that are incorporated into the cell wall of pathogenic fungi. This study analyzed the structure and function of GfsA from . To provide crucial insights into the catalytic mechanism and substrate recognition, the complex structure was elucidated with manganese (Mn), a donor substrate product (UDP), and an acceptor sugar molecule (β-galactofuranose). In addition to the typical GT-A fold domain, GfsA has a unique domain formed by the N and C termini. The former interacts with the GT-A of another GfsA, forming a dimer. The active center that contains Mn, UDP, and galactofuranose forms a groove structure that is highly conserved in the GfsA of Pezizomycotina fungi. Enzymatic assays using site-directed mutants were conducted to determine the roles of specific active-site residues in the enzymatic activity of GfsA. The predicted enzyme-substrate complex model containing UDP-Galf characterized a specific β-galactofuranosyltransfer mechanism to the 5'-OH of β-galactofuranose. Overall, the structure of GfsA in pathogenic fungi provides insights into the complex glycan biosynthetic processes of fungal pathogenesis and may inform the development of novel antifungal therapies.

摘要

UDP-α-D-呋喃半乳糖(UDP-Galf):β-呋喃半乳糖苷β-(1→5)-呋喃半乳糖基转移酶,即GfsA,在合成并入致病真菌细胞壁的β-(1→5)-呋喃半乳糖基寡糖过程中至关重要。本研究分析了来自[具体来源未给出]的GfsA的结构与功能。为深入了解催化机制和底物识别,解析了该复合物与锰(Mn)、供体底物产物(UDP)以及受体糖分子(β-呋喃半乳糖)的结构。除典型的GT-A折叠结构域外,GfsA还具有由N端和C端形成的独特结构域。前者与另一个GfsA的GT-A相互作用,形成二聚体。包含Mn、UDP和呋喃半乳糖的活性中心形成了一个在粪壳菌纲真菌的GfsA中高度保守的凹槽结构。利用定点突变体进行酶活性测定,以确定特定活性位点残基在GfsA酶活性中的作用。含有UDP-Galf的预测酶-底物复合物模型表征了一种针对β-呋喃半乳糖5'-OH的特定β-呋喃半乳糖基转移机制。总体而言,致病真菌中GfsA的结构为真菌致病过程中复杂的聚糖生物合成过程提供了见解,并可能为新型抗真菌疗法的开发提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1d5/11538602/3d1aff21f4e1/pgae482f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验