Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016, China.
J Agric Food Chem. 2024 Nov 20;72(46):25549-25559. doi: 10.1021/acs.jafc.4c07875. Epub 2024 Nov 7.
The widespread use of benzoylurea insecticides (BUs) has led to significant resistance issues in various agricultural pests. Previous studies have demonstrated that the overexpression of sigma glutathione S-transferase 1 (PxGSTs1) can confer resistance to novaluron in ; however, the underlying molecular mechanism remains unclear. This study investigates the role of glutathione S-transferase PxGSTs1 in mediating resistance to BUs in . Using a combination of RNA interference and transgenic models, we demonstrated that the overexpression of significantly contributes to the resistance against BUs. Functional assays revealed that PxGSTs1 binds to these insecticides with varying affinities. Structural analysis through homology modeling and molecular docking identified the importance of hydrogen bonding and pi-pi stacking in resistance mechanisms. Site-directed mutagenesis confirmed the critical role of Ser65 and Tyr97 in these interactions. Our findings provide a molecular basis for the development of novel BUs and inform strategies for managing BU resistance in .
苯甲酰脲类杀虫剂(BUs)的广泛使用导致了各种农业害虫产生了显著的抗药性问题。先前的研究表明,sigma 谷胱甘肽 S-转移酶 1(PxGSTs1)的过表达可以赋予对新型除虫脲的抗性;然而,其潜在的分子机制尚不清楚。本研究探讨了谷胱甘肽 S-转移酶 PxGSTs1 在介导 对 BUs 抗性中的作用。通过 RNA 干扰和转基因 模型的组合,我们证明了 过表达显著有助于对 BUs 的抗性。功能分析表明,PxGSTs1 以不同的亲和力与这些杀虫剂结合。通过同源建模和分子对接进行的结构分析确定了氢键和 pi-pi 堆积在抗性机制中的重要性。定点突变证实了 Ser65 和 Tyr97 在这些相互作用中的关键作用。我们的研究结果为新型 BUs 的开发提供了分子基础,并为管理 中的 BU 抗性提供了策略。